Common Graphs with Arbitrary Chromatic Number

Jan Volec

(joint work with Dan Král' and Fan Wei)

Ramsey's theorem states that for every graph H, there is an integer R(H) such every 2-edge-coloring of R(H)-vertex complete graph contains a monochromatic copy of H. In this talk, we focus on a natural quantitative extension: how many monochromatic copies of H can we find in every 2-edge-coloring of K_n , and what graphs H are so-called common, i.e., the number of monochromatic copies of His asymptotically minimized by a random 2-edge-coloring. A classical result of Goodman [1] from 1959 states that the triangle is a common graph. On the other hand, Thomason [4] proved in 1989 that no clique of order at least four is common, and the existence of a common graph with chromatic number larger than three was open until 2012, when Hatami, Hladký, Král', Norin and Razborov [2] proved that the 5-wheel is common. In this talk, we show that for every k > 4, there exists a common graph with chromatic number k.

References

- A. W. Goodman: On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66 (1959), 778–783.
- [2] H. Hatami, J. Hladký, D. Král', S. Norine and A. Razborov: Non-threecolourable common graphs exist, Combin. Probab. Comput. 21 (2012), 734– 742.
- [3] D. Král', J. Volec, F. Wei: Common graphs with arbitrary chromatic number, Available as arxiv:2206.05800.
- [4] A. Thomason: A disproof of a conjecture of Erdős in Ramsey theory, J. London Math. Soc. (2) 39 (1989), 246–255.