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Dear Participant,

welcome to the Twenty-seventh Workshop Cycles and Colourings. Except for
the first workshop in the Slovak Paradise (Čingov 1992), the remaining twenty
five workshops took place in the High Tatras (Nový Smokovec 1993, Stará Lesná
1994–2003, Tatranská Štrba 2004–2010, Nový Smokovec 2011–2017).

The series of C&C workshops is organised by combinatorial groups of Košice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks, the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008, 2013).

This workshop is dedicated to the 70th birthday of Stano Jendrol’, who is one of
the founders of the whole sequence of C&C workshops.

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

Csilla Bujtás University of Pannonia, Veszprém, Hungary

Jochen Harant Technische Universität Ilmenau, Germany

Bill Jackson Queen Mary University of London, United Kingdom

Ross J. Kang Radboud University Nijmegen, Netherlands

Bojan Mohar Simon Fraser University, Burnaby, Canada

University of Ljubljana, Slovenia

Mariusz Woźniak AGH University of Science and Technology, Kraków, Poland

Carol Zamfirescu Ghent University, Belgium

Have a pleasant and successful stay in Nový Smokovec.

Organising Committee:

Igor Fabrici

Frantǐsek Kardoš

Mária Maceková

Tomáš Madaras

Martina Mockovčiaková

Roman Soták



Programme

Sunday

16:00 - 22:00 Registration

18:00 - 21:00 Dinner

Monday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Bujtás Covering triangles by edges

09:55 - 10:15 A Ryjáček A closure concept for {K1,4, K1,4 + e}-free graphs

10:20 - 10:40 A Mohr Kempe chains and rooted minors

10:45 - 11:15 Coffee break

11:15 - 11:35 A Lužar On 3-choosability of 4-regular planar graphs

B Korcsok 2-colored point-set embeddability of the outerplanar
graphs

11:40 - 12:00 A Pierron Coloring the squares of planar graphs with no 4-cycle

B Masař́ık Complexity of packing coloring

12:05 - 12:30 A Problem session 1

12:30 - 14:00 Lunch

15:30 - 16:20 A Harant Lightweight paths in graphs

16:25 - 16:55 Coffee break

16:55 - 17:15 A Czap Zig-zag coloring of plane graphs

B Dettlaff Domination and certified domination numbers

17:20 - 17:40 A Valiska Facial L(2, 1)-labelings of trees

B Lemańska Characterizations of some perfect graphs

17:45 - 18:05 A Šugerek Three classes of 1-planar graphs

B Michalski Secondary kernels in graph products

19:00 - Birthday party
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Tuesday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Jackson Rigidity of graphs and frameworks

09:55 - 10:15 A Tuza Efficient algorithms for tropical matchings

10:20 - 10:40 A Šámal A rainbow version of Mantel’s Theorem

10:45 - 11:15 Coffee break

11:15 - 11:35 A Schmidt Even longer cycles in essentially 4-connected planar
graphs

B Hušek A generalization of nowhere-zero flows

11:40 - 12:00 A Lo Longest cycles in cyclically 4-edge-connected cubic
planar graphs

B Kompǐsová Flow and circular flow number of cubic signed graphs

12:05 - 12:30 A Problem session 2

12:30 - 14:00 Lunch

15:30 - 16:20 A Zamfirescu Spanning subgraphs of planar graphs

16:25 - 16:55 Coffee break

16:55 - 17:15 A Schweser DP-colorings of hypergraphs

B Čekanová Structure of edges in plane graphs with bounded dual
edge weight

17:20 - 17:40 A Mockovčiaková Some leapfrog fullerene graphs have exponentially
many Hamilton cycles

B Knor Trees with the maximal value of Graovac-Pisanski
index

17:45 - 18:05 A Timková H-force number in distance graphs

B Abrosimov On the volume of a compact hyperbolic antiprism

18:15 - 20:00 Dinner
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Wednesday

06:30 - 09:00 Breakfast

08:00 - 15:00 Trip

13:00 - 15:00 Lunch

18:15 - 20:00 Dinner

Thursday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Mohar Fifty years of the Ringel and Youngs Map Colour
Theorem

09:55 - 10:15 A Nedela Hamiltonicity of cubic Cayley graphs of small girth

10:20 - 10:40 A Škoviera Cyclic connectivity, edge-elimination, and the twisted
Isaacs graphs

10:45 - 11:15 Coffee break

11:15 - 11:35 A Lukot’ka Short cycle covers of graphs with minimal degree three

B Pekárek Triangle-free 3-colorability on torus and cylinder

11:40 - 12:00 A Máčajová Smallest nontrivial snarks of oddness 4

B Goodall A Tutte polynomial for maps

12:05 - 12:25 A Mazák Structure of small snarks

B Steiner Circular colourings of digraphs

12:30 - 14:00 Lunch

15:30 - 16:20 A Woźniak Local irregularity – a new point of view

16:25 - 16:55 Coffee break

16:55 - 17:15 A Przyby lo Regular graphs can be decomposed into two subgraphs
fulfilling the 1–2–3 Conjecture

B Furmańczyk Equitable list vertex colourability and arboricity of grids

17:20 - 17:40 A Pelayo Neighbor-locating colorings in pseudotrees

B Bednarz On new generalization of the Fibonacci numbers

17:45 - 18:05 A Feňovč́ıková On inclusive distance vertex irregular labelings

B Görlich Z2 × Z2-cordial cycle-free hypergraphs

19:00 - Farewell party
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Friday

07:00 - 09:00 Breakfast

09:00 - 09:50 A Kang Three problems about cycles and colourings

09:55 - 10:15 A Pirot Fractional chromatic number of small degree graphs of
given girth

10:20 - 10:40 A Novotná List 3-Coloring is polynomial on graphs without linear
forests up to seven vertices

10:45 - 11:15 Coffee break

11:15 - 11:35 A Št’astná Tetrises and Erdős-Faber-Lovász Conjecture

11:40 - 12:00 A Gancarzewicz Triangle-free graphs with every matching in a Hamil-
tonian cycle

12:05 - 12:25 A Rindošová Facially proper unique-maximum coloring of plane
graphs

12:30 - 13:30 Lunch

5



On the volume of a compact hyperbolic antiprism

Nikolay Abrosimov

(joint work with Vuong Huu Bao)

We consider a compact hyperbolic antiprism. It is a convex polyhedron with 2n
vertices in H3 which has a symmetry group S2n generated by a mirror-rotational
symmetry of order 2n, i.e. rotation to the angle π/n followed by a reflection. We
establish necessary and sufficient conditions for the existence of such polyhedra
in hyperbolic space H3. Then we find relations between their dihedral angles
and edge lengths in the form of a cosine rule. Finally, we obtain exact integral
formulas expressing the volume of a hyperbolic antiprism in terms of the edge
lengths.

Theorem 1. A compact hyperbolic antiprism with 2n vertices and edge lengths
a, c having a symmetry group S2n is exist if and only if

1 + cosh a− 2 cosh c+ 2 (1− cosh c) cos
π

n
< 0.

Theorem 2. The volume of a compact hyperbolic antiprism with 2n vertices
and edge lengths a, c is given by the formula

V = n

∫ c

c0

aG+ tH

(2 cosh2 t− 1− cosh a)
√
R
dt,

where

G = 2
(

cosh t− cos
π

n

)
sinh a sinh t,

H = −(cosh a− 1)
(

1 + cosh a+ 2 cosh2 t− 4 cosh t cos
π

n

)
,

R = 2− cosh a(2 + cosh a) + cosh 2t+ 4(cosh a− 1) cosh t cos
π

n
− 2 sinh2 t cos

2π

n

and c0 is the root of the equation 2 cosh c
(
1 + cos π

n

)
= 1 + cosh a+ 2 cos π

n
.

In particular case n = 3 an antiprism become an octahedron with 3-symmetry.
In this case theorems 1 and 2 are coincide with the results given in [1]. When
n = 2 the upper and lower n-gonal faces of an antiprism degenerate to line seg-
ments. Thus we get a tetrahedron with a symmetry group S4. The latter case
was previously studied in [2].

References

[1] N.V. Abrosimov, E.S. Kudina, A.D. Mednykh, On the volume of a hyperbolic
octahedron with 3-symmetry, Proc. Steklov Inst. Math. 288 (2015), 1–9.

[2] N.V. Abrosimov, V.H. Bao, The volume of a hyperbolic tetrahedron with
symmetry group S4, Tr. Inst. Mat. Mekh. 23:4 (2017), 7–17.
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On new generalization of the Fibonacci numbers

Natalia Bednarz

Let k > 2, n > 0 be integers and let p > 1 be a rational number. The (k, p)-
Fibonacci numbers Fk,p(n) are defined recursively in the following way

Fk,p(n) = pFk,p(n− 1) + (p− 1)Fk,p(n− k + 1) + Fk,p(n− k)

for n > k with initial conditions

Fk,p(n) =

{
0 for n = 0

pn−1 for 0 < n 6 k − 1

Particular cases of the previous definition are:

• If k = 2, p = 1, the classical Fibonacci numbers are obtained.

• If k = 2, p = 3
2
, the Pell sequence appears.

In the talk we give some properties of numbers Fk,p(n) and their combinatorial
interpretations. In particular these interpretations are related to tilings and spe-
cial edge-shade colouring in graphs. We present identities for numbers Fk,p(n)
which generalize the well-known identities for Fibonacci numbers and Pell num-
bers, simultaneously.

References

[1] U. Bednarz, I. W loch, M. Wo lowiec-Musia l, Total graph interpretation of the
numbers of the Fibonacci type, J. Appl. Math. (2015), 1-7.

[2] N. Bednarz, A. W loch, I. W loch, The Fibonacci numbers in edge coloured
unicyclic graphs, Util. Math. 106 (2018), 39-49.

Covering triangles by edges

Csilla Bujtás

In a graph G, a triangle packing is a set of pairwise edge-disjoint triangles, and a
triangle covering is a set of edges the removal of which makes the graph triangle-
free. The maximum size ν∆(G) of a triangle packing and the minimum size
τ∆(G) of a triangle covering clearly satisfies τ∆(G) ≤ 3ν∆(G). It was conjectured
by Zsolt Tuza in 1984 that the following stronger statement

τ∆(G) ≤ 2ν∆(G)

is also valid for every G. For the complete graphs K4 and K5, the relation
holds with equality as τ∆(K4) = 2, ν∆(K4) = 1, and τ∆(K5) = 4, ν∆(K5) = 2.
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Moreover, for every positive ε there exists a K4-free graph G with τ∆(G) >
(2− ε)ν∆(G).

Although the problem was extensively studied by lots of authors, the conjecture
is still open. In the talk, we survey the earlier results and discuss some recent
ones concentrating on the class of K4-free graphs.

Structure of edges in plane graphs

with bounded dual edge weight

Kataŕına Čekanová

(joint work with Mária Maceková)

In 1955 Kotzig proved that every 3-connected plane graph contains an edge with
the sum of degrees of its end vertices at most 13. This result was later extended
to all planar graphs having δ(G) ≥ 3. The plane graph K2,r, r ≥ 2, shows
that analogue of Kotzig theorem cannot be extended in general for graphs with
minimum degree 2. However, if we consider additional condition on the girth of
the graph, then G will contain an edge of weight at most 7 for g(G) ≥ 5.

Authors Hudák, Maceková, Madaras and Široczki studied the relationship be-
tween the minimum vertex degree, minimum face size, minimum edge weight and
minimum dual edge weight in plane graphs with δ(G) = 2. They determined
for which parameters the corresponding families are nonempty or empty, respec-
tively. This inspired us to study the structure of edges in connected plane graphs
with δ(G) = 2 and given dual edge weight w∗(G), where

w∗(G) = min{d(α) + d(β) : α, β ∈ F, α 6= β, α and β have a common edge}.

We proved the following: if w∗(G) ≥ 9, then G contains an edge of type (2, 10)
or (3, 4); if w∗(G) ≥ 10, then G contains an edge of type (2, 10) or (3, 3); if
w∗(G) ≥ 11, then G contains an edge of type (2, 6) or (3, 3); if w∗(G) ≥ 14, then
G contains an edge of type (2, 6), and if w∗(G) ≥ 15, then G contains an edge of
type (2, 4). Moreover, all bounds are the best possible.

Zig-zag coloring of plane graphs

Július Czap

(joint work with Stanislav Jendrol’ and Margit Voigt)

Let G be a plane graph with vertex set V , edge set E and face set F . Two
distinct edges are facially adjacent in G if they are consecutive edges on the
boundary walk of a face of G. Two distinct elements of V ∪ E are facially
adjacent in G if they are incident elements, adjacent vertices or facially adjacent
edges. A facial total-coloring of G is a total-coloring such that any two facially
adjacent elements receive different colors. A zig-zag coloring of G is a facial
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total-coloring c : V ∪ E → {1, . . . , k} such that c(xi) > max{c(xi−1), c(xi+1)} or
c(xi) < min{c(xi−1), c(xi+1)} for every xi−1xixi+1 ⊆ ∂(f), where ∂(f) denotes
the boundary walk of a face f .

In the talk we obtain lower and upper bounds for the minimum number of col-
ors which is necessary for such a coloring. Moreover, we give several sharpness
examples and formulate some open problems.

Domination and certified domination numbers

Magda Dettlaff

(joint work with Magdalena Lemańska, Mateusz Miotk,
Jerzy Topp, Rados law Ziemann, and Pawe l Żyliński)

Given a graph G, we say that a subset D ⊆ VG is a dominating set of G if every
vertex belonging to VG − D is adjacent to at least one vertex in D. The dom-
ination number (upper domination number, respectively) of a graph G, denoted
by γ(G) (Γ (G), respectively), is the cardinality of a smallest (largest minimal,
respectively) dominating set of G. A subset D ⊆ VG is called a certified domi-
nating set of G if D is a dominating set of G and every vertex belonging to D
has either zero or at least twoneighbors in VG −D. The cardinality of a smallest
(largest minimal, respectively) certified dominating set of G is called the certified
(upper certified, respectively) domination number of G and is denoted by γcer(G)
(Γcer(G), respectively).

It is obvious that for any graph G we have the inequalities γ(G) ≤ γcer(G) ≤
Γcer(G), while the parameters γcer(G) and Γ (G), and also the parameters Γcer(G)
and Γ (G) are not comparable.

Certified domination was introduced in [1] in order to describe some possible re-
lations in social networks. The studies on this topic are continued in [2]. For
different classes of graphs G we establish conditions for the equality of the dom-
ination number γ(G) and the certified domination number γcer(G) of a graph G.
Furthermore, we characterize all graphs G for which γ(H) = γcer(H) for each in-
duced and connected subgraph H 6= K2 of G. We also study the main properties
of the upper certified domination number Γcer(G) of G and its relations to γcer(G)
and Γ (G).

References

[1] M. Dettlaff, M. Lemańska, J. Topp, R. Ziemann, P. Żyliński, Certified domi-
nation, submitted.

[2] M. Dettlaff, M. Lemańska, M. Miotk, J. Topp, R. Ziemann, P. Żyliński,
Graphs with equal domination and certified domination numbers, submitted.
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On inclusive distance vertex irregular labelings

Andrea Feňovč́ıková

(joint work with Martin Bača, Slamin, and Kiki A. Sugeng)

For a simple graph G, a vertex labeling f : V (G) → {1, 2, . . . , k} is called a
k-labeling. The weight of a vertex v, denoted by wtf (v) is the sum of all vertex
labels of vertices in the closed neighborhood of the vertex v. A vertex k-labeling
is defined to be an inclusive distance vertex irregular k-labeling of G if for every
two different vertices u and v there is wtf (u) 6= wtf (v). The minimum k for
which the graph G has an inclusive distance vertex irregular k-labeling is called
the inclusive distance vertex irregularity strength of G.

In the talk we will establish some bounds of the inclusive distance vertex irregu-
larity strength and determine the exact value of this parameter for several families
of graphs.

Equitable list vertex colourability

and arboricity of grids

Hanna Furmańczyk

(joint work with Ewa Drgas-Burchardt,
Janusz Dybizbański, and Elżbieta Sidorowicz)

A graph G is equitably k-list arborable if for any k-uniform list assignment L,
there is an equitable L-colouring of G whose each colour class induces an acyclic
graph. The smallest number k admitting such a coloring is named equitable list
vertex arboricity and is denoted by ρ=l (G). Zhang in 2016 [1] posed the conjecture
that if k ≥ d(∆(G) + 1)/2e then G is equitably k-list arborable. We give some
new tools that are helpful in determining values of k for which a general graph is
equitably k-list arborable. We use them to prove the Zhang’s conjecture [1] for
d-dimensional grids where d ∈ {2, 3, 4} and give new bounds on ρ=l (G) for general
graphs and for d-dimensional grids with d ≥ 5.

References

[1] X. Zhang, Equitable list point arboricity of graphs, Filomat 30:2 (2016), 373–
378.
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Triangle-free graphs

with every matching in a Hamiltonian cycle

Grzegorz Gancarzewicz

We consider only finite graphs without loops and multiple edges. We will give
a sufficient condition on the degrees of the vertices in triangle-free graphs under
which every matching is contained in a Hamiltonian cycle. This is a modification
of a result by Kenneth A. Berman [1] for cycles through matchings in graphs and
a result by Stephan Brand [2] for Hamiltonian cycles in triangle-free graphs.

References

[1] K.A. Berman, Proof of a conjecture of Haggkvist on cycles and independent
edges, Discrete Math. 46 (1983) 9–13.

[2] S. Brandt, Cycles and paths in triangle-free graphs, in: R.L. Graham, J. Nešet-
řil (eds.) The Mathematics of Paul Erdős II, Algorithms and Combinatorics,
Springer, 1997.

Z2 × Z2Z2 × Z2Z2 × Z2-cordial cycle-free hypergraphs

Agnieszka Görlich

(joint work with Sylwia Cichacz and Zsolt Tuza)

If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some
graph G induces an edge labeling on G; the edge uv receives the label f(u)+f(v).
A graph G is A-cordial if there is a vertex-labeling such that the vertex label
classes differ in size by at most one and that the induced edge label classes differ
in size by at most one.

The problem of A-cordial labelings of graphs can be naturally extended for hy-
pergraphs. We show some families of cycle-free Z2 × Z2-cordial hypergraphs i.a.
p-uniform hypetrees for p > 2, stars and hyperpaths. We also present a necessary
and sufficient condition for hypergraphs of maximum degree 1 to be Z2 × Z2-
cordial.

A Tutte polynomial for maps

Andrew Goodall

(joint work with Guus Regts, Lluis Vena, Thomas Krajewski, and Bart Litjens)

We follow Tutte’s footsteps in how he created his “dichromate” (the Tutte poly-
nomial) as a simultaneous generalization of the chromatic polynomial and flow
polynomial, counting colourings and flows of graphs. Only this time we shall
count the analogues of colourings and flows for maps (graphs 2-cell embedded in
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surfaces). We end up with a multivariate polynomial – a “dichromate for maps”
– that, like the Tutte polynomial of a graph, contains combinatorially significant
specializations other than the colourings and flows it was defined to capture at
the outset. Formally akin to Tutte’s V -function for graphs, our invariant contains
among its specializations the various existing extensions of the Tutte polynomial
to maps, namely the Bollobás–Riordan polynomial, Las Vergnas polynomial and
Krushkal polynomial.

This talk will be a broad-brush sketch of ideas contained in [1, 2].

References

[1] A.J. Goodall, T. Krajewski, G. Regts, L. Vena, A Tutte polynomial for maps,
Combin. Probab. Comput., to appear, arXiV:1610.04486.

[2] A.J. Goodall, B.M. Litjens, G. Regts, L. Vena, A Tutte polynomial for maps
II: the non-orientable case, arXiv:1804.01496.

Lightweight paths in graphs

Jochen Harant

(joint work with Meret Behrens and Stanislav Jendrol’)

For a path P on V (P ) of a graph G, let wG(P ) =
∑

v∈V (P ) dG(v) be the weight

of P in G, where dG(v) denotes the degree of a vertex v in G. Clearly, if P is a
hamiltonian path of G and d is the average degree of G, then wG(P ) = d · |V (G)|.

We investigate the following problem:
Given a graph G on V (G) and an integer l < |V (G)|, find the smallest constant
c = c(G, l) such that whenever G contains a path on k ≤ l vertices, there is a
path P of G on k vertices for which wG(P ) ≤ c · k.

A generalization of nowhere-zero flows

Radek Hušek

(joint work with Peter Korcsok and Robert Šámal)

A flow in a digraph G = (V,E) is an assignment of values of some abelian group Γ
to edges of G such that Kirchhoff’s law is valid at every vertex. We say a flow is
nowhere-zero if it does not use value 0 at any edge.

A natural generalization of nowhere-zero flows are k-free flows (first introduced
as k-connected flows in diploma thesis of Šámal [1]). A Γ -flow ϕ is k-free if for
k′ ≤ k and edges e1, . . . , ek′ :

ϕ(e1) + · · ·+ ϕ(ek′) 6= 0.
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Obviously nowhere-zero flows are exactly 1-free flows and antisymmetric flows
studied by Nešetřil and Raspaud [2] and others are 2-free flows. For both nowhere-
zero flows and antisymmetric flows there exist finite groups such that every graph
has a nowhere-zero (resp. antisymmetric) flow in the given group if the graph
does not contain any obvious obstacle.

For nowhere zero flows such a group is Z6 as proved by Seymour [3] and the
obstacle is a bridge. In the case of antisymmetric flows the obstacles are bridges
and directed cuts of size two, and it was proved by DeVos et al. [4] that some
group of size less than 1012 is enough. It was asked by Nešetřil and Šámal [1]
and then again in 2015 at CanaDAM conference whether for every k exists some
nk such that every graph without directed cut of size ≤ k (which is an obvious
obstacle) does have a k-free flow in some group of size at most nk.

Šámal [1] showed that this is true for (2k + 1)-connected graphs. We show some
partial results towards this conjecture: We improve the connectivity bound to
2k − 1 and show that it is enough to restrict ourselves to cyclic groups:

Theorem. If graph has a k-free flow in a group Γ , it also has a k-free flow in Zn
for all n ≥ f(|Γ |, k).

References

[1] R. Šámal, Nenulové toky, diploma thesis 2001.
[2] J. Nešetřil, A. Raspaud, Antisymmetric flows and strong colourings of oriented

graphs, Ann. Inst. Fourier 49:3 (1999), 1037–1056.
[3] P. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30:2 (1981),

130–135.
[4] M. DeVos, T. Johnson, P. Seymour, Cut coloring and circuit covering, manuscript

2003.

Rigidity of graphs and frameworks

Bill Jackson

The first reference to the rigidity of frameworks in the mathematical literature
occurs in a problem posed by Euler in 1776. Consider a polyhedron P in 3-
space. We view P as a ‘panel-and-hinge framework’ in which the faces are 2-
dimensional panels and the edges are 1-dimensional hinges. The panels are free
to move continuously in 3-space, subject to the constraints that the shapes of
the panels and the adjacencies between them are preserved, and that the relative
motion between pairs of adjacent panels is a rotation about their common hinge.
The polyhedron P is rigid if every such motion results in a polyhedron which is
congruent to P . Euler’s conjecture was that every polyhedron is rigid.

The conjecture was verified for the case when P is convex by Cauchy in 1813.
Gluck showed in 1975 that it is true when P is ‘generic’ i.e. there are no alge-
braic dependencies between the coordinates of the vertices of P . Connelly finally
disproved the conjecture in 1982 by constructing a polyhedron which is not rigid.
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I will describe results and open problems concerning the rigidity of various other
types of frameworks. I will be mostly concerned with the generic case for which
the problem of characterizing rigidity usually reduces to pure graph theory.

Three problems about cycles and colourings

Ross J. Kang

My aim is to present three recently posed problems. They touch upon several
different areas of combinatorial mathematics. For each of them I will briefly give
background and motivation. The first two relate well to work by Stano Jendrol’.

Conjecture 1 ([3]). Fix t ≥ 2. There is some even λt such that for any even ` the
following holds. There are C`-free graphs of maximum degree d with distance-t
chromatic index Ω(dt) if ` < λt, while every C`-free graph of maximum degree d
has distance-t chromatic index O(dt/ log d) if ` ≥ λt.

Conjecture 2 ([2]). Fix ε > 0. For d sufficiently large, every planar multigraph
of maximum degree d has strong chromatic index at most (9/2 + ε)d.

Conjecture 3 ([1]). There exists C > 0 such that any triangle-free graph of min-
imum degree d contains a bipartite induced subgraph of minimum degree C log d.

References

[1] L. Esperet, R.J. Kang, S. Thomassé, Separation choosability and dense bi-
partite induced subgraphs, arXiv:1802.03727.

[2] R.J. Kang, W. van Loon, Tree-like distance colouring for planar graphs of
sufficient girth, arXiv:1805.02156.

[3] R.J. Kang, F. Pirot, Distance colouring without one cycle length, arXiv:1701.
07639.

Trees with the maximal value
of Graovac-Pisanski index

Martin Knor

(joint work with Riste Škrekovski and Aleksandra Tepeh)

Let G be a graph. Its Graovac-Pisanski index is defined as

GP (G) =
|V (G)|

2|Aut(G)|
∑

u∈V (G)

∑
α∈Aut(G)

distG(u, α(u)),

where Aut(G) is the group of automorphisms of G. Similarly as Wiener index
is correlated with boiling points of alcanes, Graovac-Pisanski index is correlated
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with melting points of hydrocarbon molecules. Obviously, if the group of auto-
morphisms of G is trivial, then GP (G) = 0. Interesting is the opposite problem.
We proved that if T is a tree on n vertices with the maximum value of Graovac-
Pisanski index, n ≥ 8, then T is either a path on n vertices Pn, or a graph
obtained from Pn−4 by attaching two pendant vertices to each end of the path.

Flow and circular flow number
of cubic signed graphs

Anna Kompǐsová

(joint work with Edita Máčajová)

A signed graph (G, σ) is a graph G with signature σ : E → {1,−1}. The flow
number Φ(G, σ) of a flow-admissible signed graph (G, σ) is the smallest integer
k, for which there exists an integer nowhere-zero k-flow on (G, σ). The circular
flow number Φc(G, σ) of a flow-admissible signed graph (G, σ) is the infimum of
real numbers r for which there exists an R-flow on (G, σ) satisfying that absolute
values of all the flow values are in the interval [1, r − 1].

The relationship between the flow number Φ(G) and the circular flow number
Φc(G) in the unsigned case is simple: Φ(G) = dΦc(G)e. Based on this result
Raspaud and Zhu [4] conjectured, that Φ(G, σ) − Φc(G, σ) < 1 for every flow-
admissible signed graph (G, σ). This conjecture was disproved by Schubert and
Steffen [5], who showed that the difference can be 2. Later, Máčajová and Steffen
[3] found a class of signed graphs with flow number 5 and the circular flow number
converging to 2, but the maximum degee in such graphs increases.

In this talk we concentrate on flows on cubic graphs since they play a crucial
role in many open problems in graph theory. We prove that there are no signed
cubic graphs with circular flow number strictly between 3 and 4. This means,
that signed cubic graph with Φ(G, σ) = 3 or 4 has the same circular flow number
and if Φ(G, σ) = 5 then Φc(G, σ) ∈ [4, 5]. We also have found infinitely many
bridgeless signed cubic graphs with Φ(G, σ) = 5 and Φc(G, σ) = 4 which disproves
the conjecture of Raspaud and Zhu even for bridgeless signed cubic graphs. If we
combine our result with those in [1, 2], we prove that for every rational number
r ∈ [4, 5] there are infinitely many signed cubic graphs with Φ(G, σ) = 5 and
Φc(G, σ) = r. Finally, we prove that every known signed graph with Φ(G, σ) = 6
has also Φc(G, σ) = 6.
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2-colored point-set embeddability

of the outerplanar graphs

Peter Korcsok

(joint work with Michael Skotnica)

Given a planar graph G = (V,E), we define a k-coloring (not necessary a proper
coloring) of G as a decomposition of the vertex set into k disjoint sets V =
V1 ∪ V2 ∪ · · · ∪ Vk and a color of a vertex v ∈ V as c(v) = i such that v ∈ Vi.
For a set S of points in a plane, we define a k-coloring as a decomposition into k
disjoint sets P = P1 ∪ P2 ∪ · · · ∪ Pk and a color of a point p ∈ P as c(p) = i such
that p ∈ Pi. For a k-colored planar graph G and k-colored point-set P , we say
that G and S are compatible if |Vi| = |Pi| holds for each i.

Given a k-colored planar graph G and a compatible k-colored point-set P , we
want to find an embedding of G into the plane such that

• each vertex v ∈ V is embedded into a distinct point p ∈ P such that
c(v) = c(p),
• each edge is embedded into partially-linear curve.

We say this embedding has a curve complexity b if b is the smallest integer such
that each edge has at most b bends.

Finally, given a family G of graphs, a curve complexity of G is the worst-case
curve complexity of any k-colored graph G ∈ G and any compatible k-colored
point-set P .

We are trying to bound the curve complexity for the 2-colored graphs. For the
family of paths, it is known that both upper and lower bound is equal 1 [2, 4].
Recently, Hančl [3] showed that 1 bend is enough also for the family of caterpil-
lars. For the family of outerplanar graphs, Di Giacomo et al. [1] showed upper
bound of 5 bends per edge. We show that at most 4 bends per edge are sufficient.
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Characterizations of some perfect graphs

Magdalena Lemańska

(joint work with Sergio Bermudo and Magda Dettlaff)

Given two types of graph theoretical parameters ρ and σ, we say that a graph G is
(σ− ρ)-perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph
H of G. We characterize (γw − τ)-perfect graphs, (γw − α′)-perfect graphs, and
(α′ − τ)-perfect graphs, where γw(G), τ(G) and α′(G) denote the weakly con-
nected domination number, the vertex cover number and the matching number
of G, respectively. Moreover, we give conditions on a graph to have equalities
between these three parameters.
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Longest cycles in cyclically 4-edge-connected

cubic planar graphs

On-Hei Solomon Lo

(joint work with Jens M. Schmidt)

A graph G is essentially 4-connected if it is 3-connected and, for every 3-separator
S of G, G− S has a component that is a single vertex. The shortness coefficient
ρ(F) of an infinite graph class F is defined to be lim infG∈F ,n→∞

circ(G)
n

, where n
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denotes the number of vertices of G and circ(G) the length of a longest cycle in
G. Grünbaum and Malkevitch [1] proved in 1976 that the shortness coefficient of
cyclically 4-edge-connected cubic planar graphs is at most 76

77
. We show that it is

at most 359
366

(< 52
53

).
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Short cycle covers

of graphs with minimal degree three

Robert Lukot’ka

(joint work with Anna Kompǐsová)

Let G be a bridgeless graph. A cycle cover of G is a set of circuits containing every
edge of G. The length of a cycle cover is the sum of lengths of its circuits. Short
cycle conjecture asserts that each bridgeless graph G has a cycle cover of length at
most 1.4 · |E(G)|. For general graphs the best bound 5/3 · |E(G)| ≈ 1.666 · |E(G)|
[1, 2] was proven already in the 80’s.

In this talk we restrict ourselfs to graphs without vertices of degree two. Kaiser
et al. proved that such graphs have cycle cover of length at most ≈ 1.630 · |E(G)|
using a componation of methods from [1] and [2] which is also a principal ap-
proach we rely on. These ideas were refined by Fan [4] who proved the bound
≈ 1.615 · |E(G)|. Both results were obtained for loopless graphs but can be gen-
eralized to graphs with loops [3]. In this talk we sketch how to show that every
bridgeless graph without vertices of degree two has a cycle cover of length less
than 1.589 · |E(G)|.
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[3] A. Kompǐsová, R. Lukot’ka, Short cycle covers of graphs with loops, manuscript.
[4] G. Fan, Integer 4-flows and cycle covers, Combinatorica 37 (2017), 1097–1112.
[5] T. Kaiser, D. Král’, B. Lidický, P. Nejedlý, R. Šámal, Short cycle covers of
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On 3-choosability of 4-regular planar graphs

Borut Lužar

(joint work with François Dross, Mária Maceková, and Roman Soták)

The question which planar graphs are 3-colorable is well investigated. Starting
with Heawood, who showed that a plane triangulation is 3-colorable if and only
if all its vertices have even degrees, it continued by Grötzsch’s result showing
that every triangle-free planar graph is 3-colorable. Allowing some triangles in a
graph, but still retaining 3-colorability yielded two intriguing conjectures. First,
Havel conjectured that a 3-colorable planar graph may contain many triangles
as long as they are sufficiently far apart. This conjecture was recently proved
by Dvořák, Král’, and Thomas [3]. The second conjecture is due to Steinberg.
It allows arbitrary many triangles but it forbids short cycles. Namely, Steinberg
conjectured that every planar graph without cycles of length 4 and 5 is 3-colorable.
The conjecture was disproved by Cohen-Addad et al. [1].

In our talk, we present a result showing that a 4-regular planar graph obtained
as the medial graph of a bipartite plane graph is 3-choosable. This answers a
question asked by Czap, Jendrol’, and Voigt [2, Problem 3.9].
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Smallest nontrivial snarks of oddness 4

Edita Máčajová

(joint work with Jan Goedgebeur and Martin Škoviera)

The oddness of a bridgeless cubic graph is the smallest number of odd circuits in
a 2-factor of the graph. Oddness constitutes one of the most important measures
of uncolourability of cubic graphs. Small graphs of given oddness are particularly
important for the verification of numerous conjectures about snarks.

In [arXiv:1712.07867] we have proved that the smallest number of vertices of a
snark with cyclic connectivity 4 and oddness 4 is 44. In this talk we show that
there are exactly 31 such snarks, all of them having girth 5. These snarks are
built up from subgraphs of the Petersen graph and a small number of additional
vertices. Depending of their structure they fall into six classes. We indicate the
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reason why these snarks have oddness 4 and sketch the proof that the 31 snarks
form a complete set snarks with cyclic connectivity 4 and oddness 4 on 44 vertices.

Complexity of packing coloring

Tomáš Masař́ık

(joint work with Minki Kim, Bernard Lidický, and Florian Pfender)

A packing k-coloring for some integer k of a graph G = (V,E) is a mapping
ϕ : V → {1, . . . , k} such that any two vertices u, v of color ϕ(u) = ϕ(v) are in
distance at least ϕ(u) + 1. This concept is motivated by frequency assignment
problems. The packing chromatic number of G is the smallest k such that there
exists a packing k-coloring of G.

Fiala and Golovach [1] showed that determining the packing chromatic number
for chordal graphs is NP-complete for diameter exactly 5. While the problem
is easy to solve for diameter 2, we show NP-completeness for any diameter at
least 3. Our reduction also shows that the packing chromatic number is hard to
approximate within n1/2−ε for any ε > 0.

Theorem. Packing chromatic number is NP-complete on chordal graphs of any
diameter at least 3. Moreover, it is hard to approximate within n1/2−ε for any
ε > 0, unless NP = ZPP.

(a) (b) (c) (d)

. . .

(e)

Figure 1: The reduction from Theorem on a 4-cycle.

In addition, we design an FPT algorithm for interval graphs of bounded diameter.
This leads us to exploring the problem of finding a partial coloring that maximizes
the number of colored vertices. We also present some approaches to tackle the
problem on (unit) interval graphs. However, the main complexity classification
remains open.
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Structure of small snarks

Ján Mazák

(joint work with Jozef Rajńık and Martin Škoviera)

We analyze the structure of all critical cyclically 5-connected snarks with up to
36 vertices and take a closer look at the most interesting specimens. Based on
this analysis, we generalize certain individual snarks into infinite families and
construct a rather rich infinite class of cyclically 5-connected irreducible snarks.

Certain parts of the analysis can be extended to solve Problem 5.7 proposed by
Chladný and Škoviera in [1] by demonstrating that there exists a pair of non-
removable edges in an irreducible snark which is not essential.

(We say that a pair of edges of a snark S is non-removable if their removal results
in a3-edge-colourable graph. A pair of distinct edges {e, f} of a snark G is essen-
tial if it is non-removable and for every 2-valent vertex v of the graph G−{e, f},
the graph obtained from G− {e, f} by suppressing v is colourable.)
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Secondary kernels in graph products

Adrian Michalski

(joint work with Iwona W loch)

A subset J ⊂ V (G) is said to be (1,2)-dominating if every vertex v /∈ J has a
neighbour in J and there exists another vertex in J within the distance at most
two from v. A (1,2)-kernel (also called secondary kernel) is a subset which is
both independent and (1,2)-dominating. Hedetniemi et al. in [1] claimed that
the problem of existence of (1,2)-kernels in an arbitrary graph is NP- complete
and gave a sufficient condition for a graph to have a (1,2)-kernel.

Theorem. [1] Every connected graph G having at least two nonadjacent vertices
and no triangles has a (1,2)-kernel of cardinality α(G).

In the talk we present some results concerning (1,2)-kernel parameters in graphs.
Moreover we give necessary and sufficient conditions for the existence of (1,2)-
kernels in special graph products. The counting problem is also studied with the
help of numbers of the Fibonacci type.

References

[1] S.M. Hedetniemi, S.T. Hedeteniemi, J. Knisely, D.F. Rall, Secondary domi-
nation in graphs, AKCE Int. J. Graphs Comb. 5 (2008), 103–115.

21



Some leapfrog fullerene graphs

have exponentially many Hamilton cycles

Martina Mockovčiaková

(joint work with Frantǐsek Kardoš)

3-connected planar cubic graphs with pentagonal and hexagonal faces are called
fullerene graphs. A fullerene is called a leapfrog fullerene, if it can be constructed
from other fullerene graph G by a leapfrog transformation – it can be obtained
by truncating the dual of G. The class of leapfrog fullerenes of fullerene graphs
with an odd number of faces was the first subclass of fullerene graphs that was
proved to be hamiltonian by Marušič [1]. Recently, Kardoš [2] proved that all
fullerene graphs are hamiltonian.

In this talk, we show that leapfrog fullerenes of fullerene graphs with an odd
number of faces have exponentially many hamilton cycles.
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Fifty years of the Ringel and Youngs

Map Colour Theorem

Bojan Mohar

What is the smallest genus of a surface in which the complete graph Kn can be
embedded? This question, known as the Heawood problem [2], was resolved in
1968 by Ringel and Youngs [6], and its solution gave birth to topological graph
theory.

In the 1990s, Archdeacon and Grable [1] and Rödl and Thomas [7] proved that
the genus of random graphs behaves very much like the genus of complete graphs.

The speaker will outline recent results about genus embeddings of dense graphs
building on the work outlined above. The work, which was originally motivated
by algorithmic questions [3], uses contemporary notions of quasi-randomness and
graph limits, and leads to interesting new problems in topological graph theory.

Substantial part of the talk will be based on recent joint work with Yifan Jing
[4, 5].
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[7] V. Rödl, R. Thomas, On the genus of a random graph, Random Structures

Algorithms 6:1 (1995), 1–12.

Kempe chains and rooted minors

Samuel Mohr

(joint work with Matthias Kriesell)

A transversal of a partition is a set which contains exactly one member from
each member of the partition and nothing else. We study the following problem.
Given a transversal T of a proper colouring C of order k of some graph G, is there
a partition H of a subset of V (G) into connected sets such that T is a transversal
of H and such that two sets of H are adjacent if their corresponding vertices from
T are connected by a path using only two colours?

This is open for each k ≥ 5; here we consider some positive results if k = 5, in
the case that G is a line graph, and disprove it for k = 7.

Hamiltonicity

of cubic Cayley graphs of small girth

Roman Nedela

(joint work with Elham Aboomahigir)

In 1969 Lovász conjectured that a vertex transitive graph admits a hamilton path.
In fact, only 5 non-hamiltonian vertex transitive graphs are known, namely K2,
the Petersen and the Coxeter graphs and their truncations. This motivates a
folklore conjecture stating that every Cayley graph is hamiltonian. Moreover,
four of the five examples are cubic graphs.

In this talk we investigate the conjecture for the cubic Cayley graphs of girth at
most 6. In general, no non-hamiltonian cubic cyclically 7-connected graph except
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the Coxeter graph is known. Note that the cyclic connectivity of a cubic graph is
bounded by the girth, and it was proved in 1995 by Nedela and Škoviera that for
the vertex transitive cubic graphs the girth equals the cyclic connectivity. The fact
that all known non-hamiltonian cubic graphs have cyclic connectivity bounded
by 7 probably motivated Thomassen to formulate the following conjecture: If the
cyclic connectivity of a cubic graph X is large enough, then X is hamiltonian.
Even the following strong conjecture could hold: A cyclically 7-connected cubic
graph is hamiltonian, or it is the Coxeter graph. Assuming the conjecture holds
true, to confirm the folklore conjecture for cubic Cayley graphs it is sufficient to
verify it for cubic Cayley graphs of girth ≤ 6.

We characterize cubic Cayley graphs of girth at most six and identify few “hard
families” of cubic Cayley graphs of small girth for which we are not able to verify
the hamiltonicity.

List 3-Coloring is polynomial on graphs

without linear forests up to seven vertices

Jana Novotná

(joint work with Tereza Klimošová, Josef Maĺık,
Tomáš Masař́ık, Dan̈ıel Paulusma, and Veronika Sĺıvová)

The k-Colouring problem is to decide if the vertices of a graph can be coloured
with at most k colours for a fixed integer k such that no two adjacent vertices are
coloured alike. If each vertex u must be assigned a colour from a prescribed list
L(u) ⊆ {1, . . . , k}, then we obtain the List k-Colouring problem. A graph G is
H-free if G does not contain H as an induced subgraph. We continue an extensive
study into the complexity of these two problems for H-free graphs. The graph
Pr + Ps is the disjoint union of the r-vertex path Pr and the s-vertex path Ps.

We prove that List 3-Colouring is polynomial-time solvable for (P2 + P5)-
free graphs and for (P3 + P4)-free graphs. Combining our results with known
results yields complete complexity classifications of 3-Colouring and List 3-
Colouring on H-free graphs for all graphs H up to seven vertices. We also
prove that 5-Colouring is NP-complete for (P3 + P5)-free graphs.
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Triangle-free 3-colorability

on torus and cylinder

Jakub Pekárek

(joint work with Zdeněk Dvořák)

For any triangle-free graph G embedded in any surface Σ and k ≤ 4, the k-
colorability can be characterized by a finite list of k-critical subgraph obstructions
(dependent on Σ and k). We focus on triangle-free 3-colorability as the only
(non-trivial) triangle-free case where the number of problematic structures is
infinite. In this setting, the torus is the simplest surface with no previously
known characterization of triangle-free 3-colorability.

Based on our previous results [1], characterizing all possible triangle-free 4-critical
graphs embeddable in the torus, we study the problems of deciding 3-colorability
and finding a proper 3-coloring of a triangle-free graph embedded in the torus
as well as the naturally related problems of triangle-free 3-colorability of graphs
embedded in the cylinder with precolored faces. We present efficient algorithms
for these problems.
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Neighbor-locating colorings in pseudotrees

Ignacio M. Pelayo

(joint work with Liliana Alcon, Marisa Gutierrez,
Carmen Hernando, and Merce Mora)

A (proper) coloring of a graph G, i.e., a partition Π = {S1, . . . , Sk} of V (G) into
independent sets (called colors), is said to be neighbor-locating (an NL-coloring
for short) if for every pair of vertices u, v belonging to color Si, there is a color
Sj such that either N(u) ∩ Sj 6= ∅ and N(v) ∩ Sj = ∅ or N(u) ∩ Sj = ∅ and
N(v) ∩ Sj 6= ∅.

The neighbor-locating chromatic number χ
NL

(G), the NLC-number for short, is
the minimum cardinality of an NL-coloring of G [1].

Given a k-coloring Π = {S1, . . . , Sk} of V (G) and a vertex x ∈ V (G), the tuple
nr(x|Π) = (x1, . . . , xk) is a defined as follows:

xi =


0, if x ∈ Si,
1, if x ∈ N(Si) \ Si,
2, if x /∈ N [Si].
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With this terminology, Π is an NL-coloring if and only if nr(x|Π) 6= nr(y|Π),
for every pair of distinct vertices x and y.

Let G be a connected graph of order n with χ
NL

(G) = k. Then, n ≤ k (2k−1 − 1).

Moreover, if G is a pseudotree (resp. a tree) then, n ≤ 1

2
k(k − 1)(k + 2) (resp.

n ≤ 1

2
k(k − 1)(k + 2)− 2). In all cases, these bounds are tight, whenever k ≥ 6.

For every integer k ≥ 4, let `(k) = k ·
(
k
2

)
. If `(k − 1) < n ≤ `(k), then

• χ
NL

(Pn) = k,

• χ
NL

(Cn) = k, if n 6= `(k)− 1,

• χ
NL

(Cn) = k + 1, if n = `(k)− 1.
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Coloring the squares

of planar graphs with no 4-cycle

Théo Pierron

(joint work with Ilkyoo Choi and Daniel W. Cranston)

Coloring the square of a graph consists in assigning colors to its vertices in such
a way that any two vertices at distance at most 2 receive different colors. While
∆ + 1 colors are needed to properly color the square of any graph of maximum
degree ∆, Wegner proved that there is no hope for a matching upper bound of
∆+O(1) in general, even for planar graphs.

We study the cycle obstructions needed to obtain such a bound for planar graphs.
We present here the case where only finitely many cycles lengths are forbidden.
In this setting, we prove that removing only cycles of length 4 is necessary and
sufficient to obtain the desired bound. For very large ∆, we also improve a result
of Bonamy, Cranston and Postle by showing that ∆+2 colors are always sufficient
for coloring the square of C4-free planar graphs, which is tight.

26



Fractional chromatic number
of small degree graphs of given girth

François Pirot

(joint work with Jean-Sébastien Sereni)

It is well known that you can color a graph G of maximum degree d greedily
with d + 1 colors. Moreover, this bound is tight, since it is reached by the
cliques. Johansson proved with a pseudo-random coloring scheme that you can
color triangle-free graphs of maximum degree d with no more than O(d/ log d)
colors. This result has been recently improved to (1 + ε)(d/ log d) for any ε > 0
when d is big enough. This is tight up to a multiplicative constant, since you can
pseudo-randomly construct a family of graphs of maximum degree d, arbitrary
large girth, and chromatic number bigger than d/(2 log d). Although these are
really nice results, they are only true for big degrees, and there remains a lot to
say for small degree graphs.

When the graphs are of small degree, it is interesting to consider the fractional
chromatic number instead, since it has infinitely many possible values – note that
if G is a subcubic graphs, then either G = K4, G is bipartite, or χ(G) = 3. It
has already been settled that the maximum fractional chromatic number over
the triangle-free subcubic graphs is 14/5 [1]. I will present a systematic method
to compute upper bounds for the independence ratio of graphs of given (small!)
degree and girth, which can sometimes lead to upper bounds for the fractional
chromatic number, and can be adapted to any family of small degree graphs un-
der some local constraints.
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Regular graphs can be decomposed into

two subgraphs fulfilling the 1–2–3 Conjecture

Jakub Przyby lo

(joint work with Julien Bensmail)

The famous 1–2–3 Conjecture asserts that the edges of every graph G without
a K2-component can be weighted with 1, 2 and 3 so that adjacent vertices in G
are associated with distinct sums of incident weights. This is still open. In the
talk we show that for almost every positive integer d, each d-regular graph can
be edge-decomposed into two subgraphs fulfilling the 1–2–3 Conjecture.
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Facially proper unique-maximum coloring

of plane graphs

Simona Rindošová

(joint work with Igor Fabrici and Mirko Horňák)

Two edges of a plane graph are facially adjacent, if they are adjacent and con-
secutive in a cyclic order around their end vertex. Facially proper edge (total)
coloring of a plane graph is a coloring in which every two facially adjacent edges
(as well as every two adjacent vertices and every edge with its end vertex) have
different colors. Unique-maximum coloring of a plane graph is a coloring in which
for each face the maximum color occurs exactly once on its elements (vertex or
edge).

In this talk we deal with facially proper unique-maximum edge (total) coloring
of plane graphs and their list versions and we present upper bounds on the cor-
responding chromatic numbers.

A closure concept

for {K1,4,K1,4 + e}-free graphs

Zdeněk Ryjáček

(joint work with Petr Vrána and Shipeng Wang)

We introduce a closure concept for hamiltonicity in the class of {K1,4,
K1,4 + e}-free graphs, extending the closure for claw-free graphs. The closure
of a {K1,4, K1,4 + e}-free graph with minimum degree at least 6 is uniquely de-
termined, is a line graph of a triangle-free graph, and preserves its hamiltonicity
or non-hamiltonicity. As applications, we show that many results on claw-free
graphs can be directly extended to the class of {K1,4, K1,4 + e}-free graphs.

A rainbow version of Mantel’s Theorem

Robert Šámal

(joint work with Ron Aharoni, Matt DeVos,
Sebastian Gonzales, and Amanda Montejano)

In this article we consider a colourful variant of the classical Mantel’s theorem.
Let G1, G2, G3 be three graphs on a common vertex set V and think of each graph
as having edges of a distinct colour. Define a rainbow triangle to be three vertices
v1, v2, v3 ∈ V so that vivi+1 ∈ E(Gi) (where the indices are treated modulo 3). We
will be interested in determining how many edges force the existence of a rainbow
triangle. Note that by taking G1 = G2 = G3 we return to the setting of Mantel’s
Theorem. Throughout the paper we fix the value τ = 4−

√
7

9
, so τ 2 ≈ 0.0226. Our

main theorem is as follows:

28



Theorem. Let G1, G2, G3 be graphs on a common set of n vertices. If |E(Gi)| >
1+τ2

4
n2 for 1 ≤ i ≤ 3, then there exists a rainbow triangle.

This theorem is sharp in the sense that τ 2 cannot be replaced by a smaller con-
stant. Since the parameter τ is not rational, there does not exist a graph G with
|V (G)| = n and |E(G)| = 1+τ2

4
n2, and thus there is no finite tight example for

our problem. However, in the setting of graph limits and graphons, this inconve-
nience is removed. Indeed, we can construct three growing sequences of graphs
that converge to three graphons each with density 1+τ2

2
and without a rainbow

triangle. It seems certain that in the setting of graphons, Razborov’s flag algebra
machinery will give an alternate proof of our result, and be useful in extending it.
(Indeed, such proof of our main theorem has been already obtained by Bernard
Lidický, Florian Pfender, and Jan Volec.) Accordingly, our main goal here is to
introduce a new type of question in extremal graph theory, provide a first proof
that is easy to verify by hand, and to suggest some potential interesting directions
to proceed. Here is one such question.

Problem. For what real numbers α1, α2, α3 > 0 is it true that every triple of
graphs G1, G2, G3 satisfying |E(Gi)| > αin

2 must have a rainbow triangle?

Even longer cycles

in essentially 4-connected planar graphs

Jens M. Schmidt

(joint work with Igor Fabrici, Jochen Harant, and Samuel Mohr)

A planar graph is called essentially 4-connected if it is 3-connected and every 3-
separator is the neighborhood of a single vertex. We prove that every essentially
4-connected planar graph G contains a cycle of length at least 5

8
(n + 2), where

n = |V (G)|. This improves the previously best-known lower bound 3
5
(n+ 2).

DP-colorings of hypergraphs

Thomas Schweser

In order to solve a question on list coloring of planar graphs, Dvořák and Postle
[2] introduced the concept of DP-coloring, which shifts the problem of finding a
coloring of a graph G from a given list L to finding an independent transversal
in an auxiliary cover-graph H with vertex set {(v, c) | v ∈ V (G), c ∈ L(v)}. This
leads to a new graph parameter, called the DP-chromatic number χDP(G) of G,
which is an upper bound for the list-chromatic number χ`(G) of G. The DP-
coloring concept was anaylized in detail by Bernshteyn, Kostochka, and Pron [1]
for graphs and multigraphs; they characterized DP-degree colorable multigraphs
and deduced a Brooks’ type result from this. In this talk, we will extend the con-
cept of DP-colorings to hypergraphs having multiple (hyper-)edges. We charac-
terize the DP-degree colorable hypergraphs and, furthermore, the corresponding
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’bad’ covers. This gives a Brooks’ type result for the DP-chromatic number of a
hypergraph.

References

[1] A. Bernshteyn, A.V. Kostochka, S. Pron, On DP-coloring of graphs and multi-
graphs, Sib. Math. J. 58 (2017), 28–36.
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Cyclic connectivity, edge-elimination,

and the twisted Isaacs graphs

Martin Škoviera

(joint work with Roman Nedela)

Edge-elimination is an operation of removing an edge together with its end-
vertices. We study the effect of this operation on the cyclic connectivity of a
cubic graph. Disregarding a small number of cubic graphs with no more than
six vertices, this operation cannot decrease cyclic connectivity by more than two.
We show that apart from three exceptional graphs (the cube, the twisted cube,
and the Petersen graph) every 2-connected cubic graph on at least eight vertices
contains an edge whose elimination decreases cyclic connectivity by at most one.
The proof reveals an unexpected behaviour of connectivity 6, which requires a
detailed structural analysis featuring the Isaacs flower snarks and their natural
generalisation, twisted Isaacs graphs, as forced structures.

Our result is closely linked to several other problems concerning cubic graphs, for
example, the existence of long cycles, decycling, and maximum genus embeddings
of cubic graphs into orientable surfaces.

Tetrises and Erdős-Faber-Lovász Conjecture

Aneta Št’astná

(joint work with Ondřej Špĺıchal)

Let’s denote by EFL the class of graphs where each graph consists of n cliques
of size n where every two cliques share at most one vertex. Erdős-Faber-Lovász
Conjecture (EFL) says that every graph G ∈ EFL is n-colorable [1].

In tetris representation of G ∈ EFL, each vertex is represented by a vector
v ∈ {0, 1}n where vi = 1 means that corresponding vertex belongs to i-th clique
(in some fixed enumeration of cliques). We denote by deg(v) the number of
cliques where v belongs. Set T of vectors is a tetris if there does not exist any
1 ≤ i, j ≤ n, i 6= j such that ai = bi = aj = bj = 1 for any two vectors a and
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b. Any tetris uniquely represents graph G ∈ EFL. We say that vectors a, b are
matching if (a+ b)i ≤ 1 for any 1 ≤ i ≤ n. Height of T , denoted by h(T ), is the
minimum number of vectors which can be obtained by repeatedly replacing the
matching vectors by their sums. If T is tetris representing G then h(T ) = χ(G).

Lin and Chang [2] proved that EFL implies that class of tight bipartite graphs Bn
is n- or (n− 1)-b-colorable. They proved this conjecture for the class Gn,k ⊂ Bn.
We obtained shorter proof of this theorem by showing that EFL holds for the
class of graphs HGn,k

⊆ EFL of graphs corresponding to Gn,k.

We also used the tetris representation to generalize partial result for the dense
graphs by Sánchez-Arroyo [3] who proved that EFL holds for all graphs where
each vertex is contained either in exactly 1 clique, or in more than

√
n cliques.

Actually, he proved stronger invariant in his proof: For any vertex v, denote
by k the number of all vertices u such that deg(u) ≥ deg(v) and u and v are

not matching. Then k ≤ deg(v)
deg(v)−1

(
n − deg(v)

)
+ 1. We generalized this to

k ≤ deg(v)
deg(v)−1−p

(
n− deg(v)− z + p

)
+ 1 + p for any set of p < deg(v)− 1 vertices

with z cliques containing at least one of the p vertices.
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Circular colourings of digraphs

Raphael Steiner

(joint work with Winfried Hochstättler)

A k-colouring of a digraph according to Erdős and Neumann-Lara is defined to
be a decomposition of the vertex set into k subsets each of them inducing an
acylic subdigraph. Since its introduction in 1980, the corresponding relative of
the chromatic number, the dichromatic number of a digraph has been investigated
in several research papers.

In this talk, we introduce a new notion of circular colourings for digraphs. The
most basic idea of this quantity, called star dichromatic number ~χ∗(D) of a di-
graph D is to allow a finer subdivision of digraphs with the same dichromatic
number into such which are “easier” or “harder” to colour by allowing fractional
values. This is related to a coherent notion for the vertex arboricity of graphs in-
troduced in [3] and resembles the concept of the star chromatic number of graphs
introduced by Vince in [2] in the framework of digraph colouring.
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Another version of circular colourings of digraphs has already been introduced
in a paper by Bokal et. al. [1]. After presenting basic properties of the new
quantity, including range, simple classes of digraphs, general inequalities and its
relation to integer counterparts as well as other concepts of fractional colouring,
we compare these two notions for digraphs and point out similarities as well as
differences in certain situations. As it turns out, the star dichromatic number is
a lower bound for the cirular dichromatic number of Bokal et al., but the gap be-
tween the numbers may be arbitrarily close to 1. This is e.g. due to the fact that
while the circular dichromatic number may increase is value by adding sinks and
sources, the star dichromatic number, as intuitively expected, remains generelly
unchanged by such operations. In the case of planar digraphs, we approach the
2-colour-conjecture of Neumann-Lara stating that simple planar digraphs are 2-
colourable by transferring an upper bound of 2.5 for the circular vertex arborcity
from [3]. We furthermore discuss examples of simple planar digraphs with cir-
cular dichromatic number arbitrarily close to 2 and point out some open problems.
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Three classes of 1-planar graphs

Peter Šugerek

(joint work with Július Czap)

A graph is called 1-planar if it can be drawn in the plane so that each of its edges
is crossed by at most one other edge. In 2014, Zhang showed that the set of all
1-planar graphs can be decomposed into three classes C0, C1, C2 with respect to
the types of crossings. He proved that every n-vertex 1-planar graph of class C1

has a C1-drawing with at most 3
5
n − 6

5
crossings. Consequently, every n-vertex

1-planar graph of class C1 has at most 18
5
n− 36

5
edges. In this talk we contribute a

stronger result. We show that every C1-drawing of a 1-planar graph has at most
3
5
n− 6

5
crossings. Next we present a construction of n-vertex 1-planar graphs of

class C1 with 18
5
n − 36

5
edges. Finally, we present the decomposition of 1-planar

join products.
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H-force number in distance graphs

Mária Timková

The H-force number of a hamiltonian graph G is the smallest number k with the
property that there exists a set W ⊆ V (G), |W | = k, such that each cycle passing
through all vertices of W is hamiltonian.

For a finite set {a1, a2, . . . , am}, 1 ≤ ai ≤ n of positive integers, the circulant
graph Cn(a1, a2, . . . , am) has vertex set {0, 1, . . . , n− 1} and two vertices u and v
of Cn(a1, a2, . . . , am) are adjacent if u− v ≡ ±ai(mod n).

For a circulant graph Cn(a1, a2, . . . , am) we establish the exact value of H-force
number.

Efficient algorithms for tropical matchings

Zsolt Tuza

(joint work with Johanne Cohen, Yannis Manoussakis, and Hong Phong Pham)

Let Gc = (V,E) be a graph, with a given coloring c on its vertices. As introduced
in [1], a tropical matching is a matching whose vertex set contains at least one
vertex from each color class occurring in c. The very first question in this context
is whether Gc contains any tropical matching. Assuming that it has one, it is
of interest to determine tropical matchings of extremal size. We provide efficient
algorithmic solutions for problems of this kind.
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Facial L(2, 1)-labelings of trees

Juraj Valiska

(joint work with Július Czap and Stanislav Jendrol’)

Let T be a tree embedded in the plane. A facial path of T is any path which is a
consecutive part of the boundary walk of T . Two edges e1 and e2 of T are facially
adjacent if they are consecutive on a facial path of T . Two edges e1 and e3 are
facially semi-adjacent if there is third edge e2 which is facially adjacent with both
e1 and e3, and the edges e1, e2 and e3 are consecutive (in this order) on a facial
path. An edge-labeling of T with labels 1, 2, . . . , k is a facial L(2, 1)-edge-labeling
if difference between any two facially adjacent edges is at least 2 and difference
between any two facially semi-adjacent edges is at least 1.
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We show that any tree T admits a facial L(2, 1)-edge-labeling with labels 1, 2, ..., 7,
where 7 is tight. If T has no vertex of degree three, then it has such a labeling
with 1, 2, . . . , 6, which is tight. If T has no vertex of degree two and three, then
T admits a facial L(2, 1)-edge-labeling with labels 1, 2, . . . , 5, which is also tight.
Finally, we characterize all trees which admit a facial L(2, 1)-edge-labeling with
labels 1, 2, 3, 4.

Local irregularity – a new point of view

Mariusz Woźniak

Let us consider a coloring f of edges of a simple graph G = (V,E). Such a
coloring defines for each vertex x ∈ V the palette of colors, i.e., the multiset of
colors of edges incident with x, denoted by M(x). These palettes can be used
to distinguish the vertices of the graph. There are many papers dealing with
distinguishing either all or only neighboring vertices in a graph.

In the first part of my talk we shall see a brief survey of the problems regarding
distinguishing colorings and, in particular, amazing relationships with the main
purpose of the conference.

In the second part, we shall consider general edge coloring f of G and we shall
distinguish only adjacent vertices. In other words, we will deal with local irregu-
larities.

Another approach to this problem (introduced in [1]) is based on the concept
of a locally irregular graph. A locally irregular graph is a graph whose adjacent
vertices have distinct degrees. We say that a graph G can be decomposed into k
locally irregular subgraphs if its edge set may be partitioned into k subsets each
of which induces a locally irregular subgraph in G. We shall characterize all
connected graphs which cannot be decomposed into locally irregular subgraphs.

The authors of [1] conjectured that apart from these exceptions all other con-
nected graphs can be decomposed into three locally irregular subgraphs.

I’ll present also some new ideas and problems introduced recently in [2]. This
new approach is a bridge between colorings and decompositions.
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Spanning subgraphs of planar graphs

Carol T. Zamfirescu

(joint work with Gunnar Brinkmann)

In the first part of the talk, which is based on joint work with Gunnar Brinkmann,
we present a generalisation of Grinberg’s hamiltonicity criterion and derive some
consequences. In particular, we extend Zaks’ version of the criterion, which en-
compasses results of Gehner and Shimamoto.

In the second part we discuss strengthenings of Thomassen’s theorem stating
that a planar graph of minimum degree at least 4 in which every vertex-deleted
subgraph is hamiltonian, must itself be hamiltonian.
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Comenius University, Bratislava, Slovakia

Korcsok Peter
Charles University, Praha, Czech Republic

Kostulak Adam
University of Gdańsk, Gdańsk, Poland
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