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Dear Participant,

welcome to the Twenty-eighth Workshop Cycles and Colourings. Except for the
first workshop in the Slovak Paradise (Cingov 1992), the remaining twenty six
workshops took place in the High Tatras (Novy Smokovec 1993, Stard Lesnd
1994-2003, Tatranska Strba 2004-2010, Novy Smokovec 2011-2018).

The series of C&C workshops is organised by combinatorial groups of Kosice and
Ilmenau. Apart of dozens of excellent invited lectures and hundreds of contributed
talks, the scientific outcome of our meetings is represented also by special issues of
journals Tatra Mountains Mathematical Publications and Discrete Mathematics
(TMMP 1994, 1997, DM 1999, 2001, 2003, 2006, 2008, 2013).

The scientific programme of the workshop consists of 50 minute lectures of invited
speakers and of 20 minute contributed talks. This booklet contains abstracts as
were sent to us by the authors.

Invited speakers:

Marthe Bonamy LaBRI, Université de Bordeaux, France

Tomas Kaiser University of West Bohemia, Plzen, Czech Republic
Borut Luzar Faculty of Information Studies, Novo mesto, Slovenia
Atsuhiro Nakamoto Yokohama National University, Japan

Monika Pil$niak AGH University of Science and Technology, Krakéw, Poland
Eckhard Steffen Universitat Paderborn, Germany

Qinglin Roger Yu Thompson Rivers University, Kamloops, Canada

Have a pleasant and successful stay in Novy Smokovec.

Organising Committee:

Igor Fabrici

Frantisek Kardos

Maéria Macekova
Tomas Madaras
Martina Mockovciakova
Roman Sotak



Programme

Sunday
16:00 - 22:00 Registration
18:00 - 21:00 Dinner
Monday
07:00 - 09:00 Breakfast
09:00 - 09:50 | A | Nakamoto Coloring triangulations, even triangulations and quad-
rangulations on surfaces
09:55 - 10:15 | A | Ryjacek Hamiltonian problems in line graphs of 3-hypergraphs
10:20 - 10:40 | A | Tuza Strong edge coloring of graph products
10:45 - 11:15 Coffee break
11:15 - 11:35 | A | Masaiik Packing directed circuits quarter-integrally
B | Bujtas Bipartite graphs with close domination and k-domina-
tion numbers
11:40 - 12:00 | A | Kabela Packing and covering directed triangles asymptotically
B | Lukotka A 3-edge-colouring algorithm
12:05 - 12:25 | A | Problem session
12:30 - 14:00 Lunch
15:30 - 16:20 | A | Yu Components condition and factors in graphs
16:25 - 16:55 Coffee break
16:55 - 17:15 | A | Hatzel Cyclewidth: A branch decomposition for directed graphs
B | Cekanova Light edges in the class of toroidal graphs
17:20 - 17:40 | A | Wiederrecht | Colouring non-even digraphs
B | Lin Equitable colorings on shifted toroidal grids
17:45 - 18:05 | A | Steiner Even dicuts and cut minors
B | Luk Tilings of the sphere by almost equilateral pentagons
19:00 - Welcome party




Tuesday

07:00 - 09:00 Breakfast
09:00 - 09:50 | A | Pil$niak Asymmetric colourings of infinite graphs
09:55 - 10:15 | A | Kalinowski On 2-distinguishable graphs
10:20 - 10:40 | A | WozZniak On directed versions of the 1-2-3 conjecture and the 1-2
conjecture
10:45 - 11:15 Coffee break
11:15 - 11:35 | A | Frick The strong path partition conjecture
B | Pelikdnova Short rainbow cycles and cuts
11:40 - 12:00 | A | de Wet Regular locally hamiltonian graphs
B | Stastna Aharoni conjecture with more edges of each color
12:05 - 12:30 | A | Problem and Photo session
12:30 - 14:00 Lunch
16:25 - 16:55 Coffee break
16:55 - 17:15 | A | Schweser On DP-coloring of digraphs
B | Parczyk The size-Ramsey number of tight 3-uniform paths
17:20 - 17:40 | A | Mohr On uniquely colourable graphs
B | Opler Generalized coloring of permutations
17:45 - 18:05 | A | Husek Counting double covers of planar graphs
B | Semanisin Minimum shortest path cover
18:15 - 20:00 Dinner




Wednesday

06:30 - 09:00 Breakfast
07:15 - 17:30 Trip
13:00 - 15:00 Lunch
18:15 - 20:00 Dinner
Thursday
07:00 - 09:00 Breakfast
09:00 - 09:50 | A | Steffen Measures of edge-uncolorability of cubic graphs
09:55 - 10:15 | A | Kemnitz On the chromatic edge stability index of graphs
10:20 - 10:40 | A | Jendrol On the cyclic coloring conjecture
10:45 - 11:15 Coffee break
11:15 - 11:35 | A | Schiermeyer | Polynomial y-binding functions for Ps-free graphs
B | Teska Hamiltonicity of lexicographic product
11:40 - 12:00 | A | Pekarek x-boundedness for limited induced odd-cycle packing
B | Heuer Constructing a uniquely Hamiltonian infinite graph all
whose vertices and ends have degree 3
12:05 - 12:25 | A | Novotna Harnessing the power of atoms
B | Chen Finding longest paths in graphs associated with hybrid
wireless sensor networks
12:30 - 14:00 Lunch
15:00 - 15:50 | A | Luzar Between proper and strong edge-colorings of subcubic
graphs
15:55 - 16:25 Coffee break
16:25 - 17:15 | A | Bonamy Planar graphs: one graph to rule them all
17:20 - 17:40 | A | Goodall The canonical Tutte polynomial for signed graphs
B | Abrosimov Volume of a compact hyperbolic tetrahedron in terms of
its edge matrix
17:45 - 18:05 | A | Kardos On the 4-color theorem for signed graphs
B | Knor Comparing Graovac-Pisanski index with Wiener index
19:00 - Farewell party




Friday

07:00 - 09:00 Breakfast

09:00 - 09:50 Kaiser Colouring Schrijver graphs: From combinatorics to
topology and back again

09:55 - 10:15 Suzuki Non-1-planarity of lexicographic products of graphs

10:20 - 10:40 Horsley Induced path numbers of regular graphs

10:45 - 11:15 Coffee break

11:15 - 11:35 Fenovcikova On cycle-antimagic labelings

11:40 - 12:00 Gancarzewicz | One edge hamiltonian graphs

11:30 - 13:30 Lunch




Volume of a compact hyperbolic tetrahedron
in terms of its edge matrix

Nikolay Abrosimov
(joint work with Vuong Huu Bao)

A compact hyperbolic tetrahedron T is a convex hull of four points in the hyperbolic
space H®. Let us denote the vertices of 7' by numbers 1,2, 3 and 4. Then denote
by ¢;; the length of the edge connecting i-th and j-th vertices. We put 6;; for
the dihedral angle along the corresponding edge. It is well known that 7' is
uniquely defined up to isometry either by the set of its dihedral angles or the
set of its edge lengths. A Gram matriz G(T') of tetrahedron T is defined as
G(T) = (—cos0;;)ij=1234, we assume here that —cosf; = 1. An edge matric
E(T) of hyperbolic tetrahedron 7" is defined as E(T") = (cosh{;;); j=1,23.4, where

More than 100 years ago Italian mathematician G. Sforza found a formula for the
volume of a compact hyperbolic tetrahedron 7" in terms of its Gram matrix (see
[2]). The new proof of the Sforza’s formula was recently given in [1].

In the present work we present an exact formula for the volume of a compact
hyperbolic tetrahedron 7T in terms of its edge matrix.

Theorem. Let T' be a compact hyperbolic tetrahedron given by its edge matrix
E = E(T) and ¢;; = (—1)"Y Ej; is ij-cofactor of E. We assume that all the edge
lengths are fixed exept {34 which is formal variable. Then the volume V = V(T
is given by the formula

1 [l €14C33(C24C34 — C23C44) + C13C44(C23C34 — C24C33
( ) ( ) tsinh t dt,
0

/ 2
C33C44 det £ C33C44 — C3y

where cofactors c;; and edge matrix determinant det I/ are functions in one vari-
able (34 denoted by t.

REFERENCES

[1] N.V. Abrosimov, A.D. Mednykh, Volumes of polytopes in constant curvature
spaces, Fields Inst. Commun. 70 (2014), 1-26.

[2] G. Sforza, Ricerche di estensionimetria differenziale negli spazi metrico-projet-
tivi, Memorie R. Accad. Sci. Lett. Modena, III, VIII (Appendice) (1907),
21-66.



Planar graphs: one graph to rule them all

Marthe Bonamy
(based on joint work with Cyril Gavoille and Michatl Pilipczuk)

Consider all planar graphs on n vertices. What is the smallest graph that contains
them all as induced subgraphs? We provide an explicit construction of such

a graph of size nato® [1], which improves upon the previous best upper bound
of n?+o() 3],

In this talk, we will gently introduce the audience to the notion of so-called univer-
sal graphs (graphs containing all graphs of a given family as induced subgraphs),
and devote some time to a key lemma in the proof. That lemma comes from a re-
cent breakthrough [2] regarding the structure of planar graphs, and has already
many interesting consequences - we hope the audience will be able to derive more.

REFERENCES

[1] M. Bonamy, C. Gavoille, M. Pilipczuk, Shorter labeling schemes for planar
graphs, arXiv:1908.03341 (2019).

[2] V. Dujmovié¢, G. Joret, P. Micek, P. Morin, T. Ueckerdt, D. Wood, Planar
graphs have bounded queue-number, arXiv:1904.04791 (2019).

[3] C. Gavoille, A. Labourel, Shorter implicit representation for planar graphs
and bounded treewidth graphs, in: L. Arge, M. Hoffmann, W. Welzl (eds.),
Algorithms ESA 2007, LNCS 4698 (2007), 582-593.

Bipartite graphs with close domination
and k-domination numbers

Csilla Bujtas
(joint work with Giilnaz Boruzanh Ekinci)

Let k be a positive integer and let G' be a graph with vertex set V(G). A subset
D C V(@) is a k-dominating set if every vertex outside D is adjacent to at least
k vertices in D. The k-domination number v;(G) is the minimum cardinality of
a k-dominating set in G. It was proved in [3] that 1(G) > v(G) + k — 2 holds
for every graph G with A(G) > k > 2 and this bound is sharp for every k > 2.

In an earlier work [1] we studied graphs satisfying 72(G) = v(G). In this talk,
based on [2], we characterize bipartite graphs satisfying the equality v(G) =
v(G) + k — 2 for each k£ > 3. While studying the problem, we introduce the
notion of ‘underlying hypergraph’ and also a new hypergraph invariant which
is called vertex-edge cover number. Further, we identify those bipartite graphs
which satisfy the equality v3(G) = v(G) + 1 hereditarily. It is also proved that
the problem of deciding whether a graph satisfies the given equality is NP-hard
for each k£ > 2.



REFERENCES

[1] G. Boruzanh Ekinci, Cs. Bujtds, On the equality of domination number and
2-domination number, arXiv:1907.07866 (2019).

[2] G. Boruzanl Ekinci, Cs. Bujtas, Bipartite graphs with close domination and
k-domination numbers, manuscript (2019).

[3] J.F. Fink, M.S. Jacobson, n-domination in graphs, Graph theory with appli-
cations to algorithms and computer science (1985), 283-300.

Light edges in the class of toroidal graphs

Katarina Cekanova

(joint work with Maria Macekovd and Roman Soték)

Let G be a class of graphs. The weight w(e) of an edge e is the sum of the degrees
of its endvertices. We say that edge is light in the class G if there exists a constant
k such that every graph G € G contains an edge with w(e) < k. Kotzig proved
that every 3-connected plane graph contains an edge with weight at most 13.
Borodin extended this result to normal plane maps and Jendrol’ described the
exact types of edges in such graphs.

Plane graphs with minimum degree 2 do not necessarily contain a light edge (e.g.
K, ,, for r > 2). However, if we consider additional condition on the girth ¢(G)
of the graph (the length of the shortest cycle in (), then G will contain an edge
of weight at most 7 for g(G) > 5.

Light edges in the class of graphs embeddable on the surfaces with higher genus
were investigated by Ivanco; later Jendrol, Tuharsky and Voss described exact
types of edges in large maps on surfaces with §(G) > 3.

In this talk we describe exact types of edges in connected toroidal graphs with
minimum degree 2 and girth at least 4.

Finding longest paths in graphs associated
with hybrid wireless sensor networks

Chiuyuan Chen
(joint work with Chao-Wei Chen and Wu-Hsiung Lin)

Given a graph G = (V, E) and a positive integer K < |V| — 1, the longest path
problem is to determine if G contains a simple path (that is, a path going through
no vertex more than once) with K or more edges. A split graph is a graph in
which its vertices can be partitioned into a clique and an independent set. It is



known that the longest path problem is NP-complete and remains NP-complete
for split graphs.

In this talk, we focus on a subclass I' of split graphs originated from the problem
of maximizing the lifetime of barrier coverage in a hybrid sensor network, which
consists of weak (energy-limited) static sensors and strong (energy-rechargeable)
mobile sensors. Reference [1] formulates the maximum lifetime barrier-coverage
in hybrid sensor network problem as the longest path problem in I and proposes
a polynomial-time algorithm to find such a path. However, we find that the
algorithm in [1] does not always produce a longest path. We therefore try to
propose a correct algorithm.
REFERENCES

[1] D. Kim, W. Wang, J. Son, W. Wu, W. Lee, A.O. Tokuta, Maximum lifetime
combined barrier-coverage of weak static sensors and strong mobile sensors,
IEEE Trans. Mobile Comput. 16 (2017), 1956—-1966.

Regular locally hamiltonian graphs

Johan P. de Wet
(joint work with Marietjie Frick)

We say a graph G is locally hamiltonian if (N (v)), the graph induced by the neigh-
bourhood of v, is hamiltonian for any v € V(G). In 1983 Pareck and Skupien
[2] asked whether there exist any connected, locally hamiltonian graphs that are
r-regular and nonhamiltonian. At the Cycles and Colourings workshop of 2018,
Nedela [1] asked whether every r-regular triangulation on a surface is hamilto-
nian. Since a triangulation of a surface is locally hamiltonian, these two problems
are closely related. We answer the first question by showing how to construct con-
nected r-regular locally hamiltonian graphs that are not hamiltonian for » > 11.
We also show that the Hamilton Cycle Problem for such graphs is NP-complete.
The second question is more difficult, but we show how the techniques developed
for locally hamiltonian graphs can be applied to triangulations on surfaces. We
conjecture that there do exist r-regular nonhamiltonian triangulations on a sur-
face.

REFERENCES

[1] R. Nedela, Problems listed for Cycles and Colourings, 2018,
https://candc.upjs.sk/history/18problems.pdf

[2] C.M. Pareek, Z. Skupieri, On the smallest non-Hamiltonian locally Hamilto-
nian graph, J. Univ. Kuwait (Sci.) 10 (1983), 9-17.
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On cycle-antimagic labelings

Andrea Fenovéikova

(joint work with Martin Baca, P. Jeyanthi,
N.T. Muthuraja, and Pothukutti Nadar Selvagopal)

A simple graph G admits an H-covering if every edge in F(G) belongs to a sub-
graph of G isomorphic to H. An (a,d)-H-antimagic total labeling of a graph G
admitting an H-covering is a bijective function from the vertex set V(G) and the
edge set E(G) of the graph G onto the set of integers {1,2,...,|V(G)|+ |E(G)|}
such that for all subgraphs H’ isomorphic to H, the sum of labels of all the edges
and vertices belonged to H' constitute the arithmetic progression with the initial
term a and the common difference d. Such a labeling is called super if the smallest
possible labels appear on the vertices.

In this talk, we will deal with the existence of the super (a, d)- H-antimagic total
labelings of wheels, fan graphs and ladders for H isomorphic to a cycle.

The strong path partition conjecture

Marietjie Frick
(joint work with Johan de Wet, Jean Dunbar, and Ortrud Oellermann)

The number of vertices in a longest path in a graph G is denoted by 7(G). Let
(a,b) be an arbitrary pair of positive integers. If the vertex set of a graph G can
be partitioned into two sets A and B such that

7((A)) < a and 7((B)) < b,

we say that (A, B) is an (a, b)-partition of G. If equality holds in both instances,
then (A, B) is an ezact (a,b)-partition.

The Path Partition Conjecture(PPC') asserts that if G is any graph such that
a+0b=71(G), then G has an (a, b)-partition. The Strong PPC asserts that under
the same circumstances G has an exact (a, b)-partition.

The PPC is a long-standing conjecture. Since its first appearance in the literature
(in [2]), several results in support of this conjecture have been proved (see [1] for
a summary). However, the partitioning techniques used in those proofs have
turned out to be unsuitable for producing exact partitions.

The PPC is known to hold for a < 8 (see [3]). In this talk it will be shown that
the Strong PPC holds for a < 7.

REFERENCES

[1] J.E. Dunbar, M. Frick, The path partition conjecture, in: R. Gera, T.W. Haynes,
S.T. Hedetniemi (eds.), Graph Theory: Favorite Conjectures and Open Prob-
lems, pp. 101-113, Springer 2018.
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[2] J.M. Laborde, C. Payan, N.H. Xuong, Independent sets and longest directed
paths in digraphs, in: Graphs and other combinatorial topics, Proc. 3rd
Czech. Symp., Prague 1982, Teubner-Texte Math. 59 (1983), 173-177.

[3] L.S. Melnikov, I.V. Petrenko, Path kernels and partitions of graphs with small
cycle length, in: V.N. Kasyanov (ed.) Methods and tools of program con-
struction and optimization, ISI SB Russian Academy of Science, Novosibirsk
(2005), 145-160 (in Russian).

One edge hamiltonian graphs

Grzegorz Gancarzewicz

We consider only finite graphs without loops and multiple edges. Using the gen-
eralized Ore’s condition given by Nicolas Lichiardopol [1] we will give a sufficient
condition under which a graph is 1-edge hamiltonian or hamiltonian connected.

REFERENCES

[1] N. Lichiardopol, New Ores type results on hamiltonicity and existence of paths
of given length in graphs, Graphs Combin. 29 (2013), 99-104.

The canonical Tutte polynomial
for signed graphs

Andrew Goodall
(joint work with Guus Regts, Lluis Vena, and Bart Litjens)

The “trivariate Tutte polynomial” of a signed graph, newly discovered by Goodall,
Litjens, Regts and Vena [1], contains among its evaluations both the number of
proper colorings of a signed graph (enumerated by Zaslavsky decades ago) and
the number of nowhere-zero flows (only recently enumerated by Qian and inde-
pendently by Goodall, Litjens, Regts and Vena). In this, the trivariate Tutte
polynomial parallels the Tutte polynomial of a graph, which contains the chro-
matic polynomial and flow polynomial as specializations. The resemblances do
not end there, and in this talk I will sketch why this polynomial invariant of
signed graphs merits the title of “the canonical Tutte polynomial”.

REFERENCES

[1] A.J. Goodall, B.M. Litjens, G. Regts, L. Vena, Tutte’s dichromate for signed
graphs, arXiv:1903.07548 (2019).
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Cyclewidth:
A branch decomposition for directed graphs

Meike Hatzel

(joint work with Archontia Giannopoulou,
Roman Rabinovich, and Sebastian Wiederrecht)

Cyclewidth is a new measure for directed graphs. It is qualitatively equivalent
to directed treewidth, but it comes with somewhat nicer properties. For example
it is closed under taking butterfly minors. The decomposition is a branch de-
composition which makes it easier to relate to other width measures as well. As
a consequence we are able to give a nice characterisation of digraphs of cyclewidth
one, a question that is still open for directed treewidth. Cyclewidth also acts as
a connection between the perfect matching width of bipartite graphs with perfect
matchings and the directed treewidth of directed graphs. Thus it allows for the
translation of structural results between directed graphs and bipartite matching
covered graphs which we illustrate on the example of a grid theorem.

Constructing
a uniquely Hamiltonian infinite graph
all whose vertices and ends have degree 3

Karl Heuer

By a result of Smith appearing in a paper of Tutte [5] we know that no finite cubic
graph exists which is uniquely Hamiltonian, i.e. contains precisely one Hamilton
cycle.

In order to address questions regarding Hamiltonicity in infinite graphs, we follow
a topological approach introduced by Diestel and Kiihn [1, 2] for defining infinite
cycles. For a locally finite connected graph G' we define its infinite cycles via its
Freudenthal compactification |G| as follows: We call a homeomorphic image of
the unit circle S* C R? in |G| an infinite cycle of G. Consequently, we call an
infinite cycle of G containing all vertices of G a Hamilton cycle of G.

The compactification points of G in its Freudenthal compactification |G| can be
understood in a purely combinatorial way: First we define an equivalence relation
on the set of all one-way infinite paths in G' by declaring two such paths equivalent
if they are joined by infinitely many vertex-disjoint paths in G. The equivalence
classes of this relation are called the ends of GG, and those correspond precisely
to the compactification points of G in |G|. For an end w of G we now define its
degree d(w) as follows:

d(w) :=sup{|R]| ; R is a set of disjoint one-way infinite paths in w}.
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Mohar [4] asked the question whether a uniquely Hamiltonian infinite graph exists
in which every vertex and every end have the same degree d for some d € N.

I [3] answered this question positively by giving a construction for d = 3, which
is in contrast to the result of Smith for finite graphs mentioned above.

In this talk I will present this construction.

REFERENCES

[1] R. Diestel, D. Kiihn, On infinite cycles I, Combinatorica 24 (2004), 69-89.

[2] R. Diestel, D. Kiihn, On infinite cycles II, Combinatorica 24 (2004), 91-116.

[3] K. Heuer, Hamiltonicity in locally finite graphs: two extensions and a coun-
terexample, Electron. J. Comb. 25 (2018), P3.13.

[4] B. Mohar, http://www.fmf.uni-lj.si/~mohar/Problems/P0703_Hamiltonicity
Infinite.html.

[5] W.T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21 (1946), 98—
101.

Induced path numbers of regular graphs

Daniel Horsley
(joint work with Saieed Akbari and Ian Wanless)

The path cover number of a graph GG, the smallest size of a collection of paths in
G such that every vertex of GG is in exactly one of the paths, has been very well
studied. The induced path number, the analogous quantity when we also demand
that the paths be induced, has also received some attention. This talk will discuss
some bounds on the induced path number of connected regular graphs that we
established recently, focussing on the cubic case.

Counting double covers of planar graphs

Radek Husek
(joint work with Peter Korcsok and Robert Sdmal)

Several recent results and conjectures study counting versions of classical exis-
tence statements. Esperet et al. [3] proved Lovdsz—Plummer conjecture: every
bridgeless cubic graph has exponentially many perfect matchings. Thomassen
proved that every planar graph has exponentially many (list) 5-colorings.

Thomassen [4] also asked the same question for 3-colorings of triangle-free planar
graphs. He gave a subexponential bound that was later improved by Asadi et
al. [1]. However, the conjecture stays open. By duality, these results and con-
jecture can be equivalently stated for the number of nowhere-zero Zs-flows (or
Zs-flows) of planar (4-edge-connected) graphs. Dvoidk, Mohar and Samal [2]
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prove that the number of Z, x Zs-flows in a 3-edge-connected graphs is at least
27/7 They provide exponential bounds also for Zy x Zo-flows and Zs-flows.

We ask the same question for cycle double covers of cubic graphs. We show
that counting cycle double covers usually allows “cheating” by splitting a cycle
consisting of more circuits into many cycles, and for this reason we try to count
circuit double covers instead. We give an almost exponential bound for planar
graphs:

Theorem. Every bridgeless cubic planar graph G = (V| E) has at least 20(V/IVD
circuit double covers.
REFERENCES

[1] A. Asadi, Z. Dvorék, L. Postle, R. Thomas, Sub-exponentially many 3-colorings
of triangle-free planar graphs, J. Combin. Theory Ser. B 103 (2013), 706-712.

[2] Z. Dvoiék, B. Mohar, R. Sdmal, Exponentially many nowhere-zero Zs-, Zs-,
and Zg-flows, arXiv:1708.09579 (2017).

[3] L. Esperet, F. Kardos, A.D. King, D. Kréal', S. Norine, Exponentially many
perfect matchings in cubic graphs, Adv. Math. 227 (2011), 1646-1664.

[4] C. Thomassen, Many 3-colorings of triangle-free planar graphs, J. Combin.
Theory Ser. B 97 (2007), 334-349.

On the cyclic coloring conjecture

Stanislav Jendrol’

(joint work with Roman Soték)

A cyclic coloring of a plane graph G is a coloring of its vertices such that vertices
incident with the same face have distinct colors. The minimum number of colors
in a cyclic coloring of a plane graph G is its cyclic chromatic number x.(G). Let
A*(G) be the maximum face degree of a graph G and ¢(G) denotes the order
of a longest path of G all vertices of which are of degree 2. For a 2-connected
plane graph G let R(G) be the graph (called the reduction of G) obtained from
G by replacing all maximal paths all interior vertices of which have degree 2 with
edges.

We show that The Cyclic Coloring Conjecture of Borodin from 1984, saying that
every connected plane graph G has x.(G) < [3A*(G)], can be reduced to hold
for 2-connected plane graphs G whose reductions R(G) are simple 3-connected
plane graphs. We have received three different upper bounds for graphs G from
this restricted family. Moreover, we have proved that the conjecture of Borodin
holds for 2-connected plane graphs with a large maximum face degree and for
two wide families of plane graphs.
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Packing and covering
directed triangles asymptotically

Adam Kabela
(joint work with Jacob Cooper, Andrzej Grzesik, and Dan Kral’)

We show that every digraph D on n nodes contains a set 1" of arc-disjoint directed
triangles and a set E of arcs so that D — E has no directed triangles and 2|T'| >
|E| — o(n?).

The study is motivated by the question of Tuza [2] asking about such sets 7" and
E and the smallest constant c¢ satisfying ¢|T| > |E|, and by the conjecture of
McDonald et al. [1] suggesting that ¢ < % for every directed multigraph.

REFERENCES

[1] J. McDonald, G.J. Puleo, C. Tennenhouse, Packing and covering directed
triangles, arXiv:1806.08809 (2018).

[2] Zs. Tuza, A conjecture on triangles of graphs, Graphs Combin. 6 (1990),
373-380.

Colouring Schrijver graphs:
From combinatorics to topology and back again

Tomas Kaiser
(joint work with Matéj Stehlik)

We will discuss ‘topological’ approaches to determining the chromatic number of
Kneser graphs and Schrijver graphs, starting with the breakthrough proof of the
Lovasz-Kneser theorem in 1978.

Moving on to recent developments in this direction, we will recall the notion of
projective quadrangulation which provides a geometric perspective on the prob-
lem. The class of projective quadrangulations includes many known graphs (in-
cluding all generalised Mycielski graphs), and results on their chromatic number
can be obtained as consequences of a general lower bound to the chromatic num-
ber of projective quadrangulations.

While Schrijver graphs (as well as Kneser graphs) are usually not projective quad-
rangulations, we will show that each Schrijver graph contains a spanning projec-
tive quadrangulation with the same chromatic number, obtaining an alternative
proof of the Lovasz—Kneser theorem.

Although this proof uses topological tools (essentially the Borsuk—Ulam theorem)
just like the original proof of Lovasz, we will discuss a fairly direct combinatorial
formulation using a form of Fan’s lemma, found by Miiller and Stehlik.
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We will then turn our attention to the question whether the above projective
quadrangulations might in fact be edge-critical subgraphs of Schrijver graphs with
the same chromatic number, much like Schrijver graphs themselves are vertex-
critical subgraphs of Kneser graphs. In some cases at least, the answer is known to
be affirmative, and we will present appealing combinatorial descriptions of these
edge-critical subgraphs which can be read off from their geometric construction.

On 2-distinguishable graphs

Rafal Kalinowski
(joint work with Wilfried Imrich, Monika Pil$niak, and Mariuzs Wozniak)

A vertex colouring of a graph G is called asymmetric if the identity is the only
automorphism preserving the colouring. A graph is d-distinguishable if G admits
an asymmetric colouring with d colours. We focus on 2-distinguishable graphs.
The motion of a graph G is the least number m(G) of vertices moved by every
non-identity automorphism of G.

A year ago, Ldszlé Babai [1] asked the following question: does there exist a func-
tion f(d) such that every connected, countable graph G with maximum degree
A(G) < d and motion m(G) > f(d), is 2-distinguishable? The value of f(3) was
determined in [2]. In [3], it was shown that f(d) = 2[log, d| for trees. In this
talk, we investigate f(4) for claw-free graphs.
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On the 4-color theorem for signed graphs

Frantisek Kardos

(joint work with Jonathan Narboni)

There are several ways to generalize graph coloring to signed graphs. Mécajov4,
Raspaud and Skoviera introduced one of them and conjectured that in this setting,
for signed planar graphs four colors are always enough, generalising thereby The
Four Color Theorem. In this talk, we disprove this conjecture.
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On the chromatic edge stability index of graphs

Arnfried Kemnitz

(joint work with Massimiliano Marangio)

The x’-edge stability number or chromatic edge stability index es,/(G) of a graph
G is the minimum number of edges of G whose removal results in a graph H C GG

with X' (H) = X'(G) — 1 (esy(G) =0 if E(G) =0).

In this talk, we give some general results for the chromatic edge stability index,
such as lower and upper bounds. Moreover, we determine es,.(G) exactly for
several well-known classes of graphs.

Comparing Graovac-Pisanski index
with Wiener index

Martin Knor

(joint work with Riste Skrekovski and Aleksandra Tepeh)

Graovac-Pisanski index, originally called a modified Wiener index, combines the
distances of a graph with its automorphisms. Let G be a graph. Its Graovac-

Pisanski index, GP(G), is defined as

GP(G):% ) dist(u,afu),

ueV(G) acAut(G)

where Aut(G) is the group of automorphisms of G' and dist(u,v) is the distance
from u to v in G. For any S C V(G) we have Wg(S5) = 3, cgdist(u,v). Then

We(V(@G)) is the famous Wiener index. Moreover, GP(G) = |V(G)[-31_, Wﬁé‘f),
where Vi, Vs, ..., V; are the orbits of Aut(G). Hence, GP(G) = 0 if all orbits
consist of single vertices, that is if Aut(G) contain only the identity. On the
other hand, if G is vertex-transitive, that is if there is just one orbit of Aut(G),
then GP(G) = W(G). One can conclude that 0 < GP(G) < W(G), and indeed,
the first inequality is trivial. We show that the second inequality holds for trees,
but there are graphs G such that GP(G) > W(G), and there are graphs G’ which
are not vertex-transitive and though GP(G’) = W(G’). If T' is a tree, then GP(T)
is an integer number. We show that W (T') — GP(T') = ¢ holds for some tree T if
and only if ¢ is a nonnegative integer different from 3 and 4.
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Equitable colorings on shifted toroidal grids

Wu-Hsiung Lin
(joint work with Kuo-Ching Huang and Hau-Yi Lin)

An equitable k-coloring of a graph G is a mapping f : V(G) — {1,2,...,k} such
that f(z) # f(y) for zy € E(G) and ||f7'(i)| — |G| S 1for 1 <i<j <k
The equitable chromatic number y—(G) is the smallest integer k& for which G
admits an equitable k-coloring, and the equitable chromatic threshold x* (G) is
the smallest integer ¢ for which G admits an equitable k-coloring for & > t.
Note that x(G) < x=(G) < x“(G). The toroidal grid (grid on a torus) T, ,
is isomorphic to C,,0C),, and the shifted toroidal grid Tgm is the i-layer-shifted
grid on a torus. The circulant graphs C, (a1, as, ..., a,) consists of vertex set
{0,1,...,n — 1} and edge set {ij : min{|i — j|,n — |i — j|} € {a1,a0,...,an}}.
It is shown that T}, is isomorphic to Cpy,(a,b) [2], and 2 < x(Cy(a,b)) < 5 has
been completely characterized [1].

We investigate the equitable colorability and the condition of which a,b,n the
equalities x(Cy(a,b)) = x=(Cy(a,b)) = x*:(Cn(a,b)) hold for connected C,(a,b).
We verify the equitable colorability of all C),(a,b) with chromatic number 4 or
5 and all C,(a,n/2), and we propose equitable 3-colorings for bipartite C,,(a, b)
when n is large. We also examine that the inequality is sharp for C,(1,3) when

n = 6,8,10,12, and verify the equitable 3-colorability of C,,(a,b) for n < 16.
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Tilings of the sphere
by almost equilateral pentagons

Hoi Ping Luk
(joint work with Min Yan)

The classification of edge-to-edge tilings of the sphere by congruent pentagons
can be divided into three cases: variable edge lengths, equilateral, and almost
equilateral. The first two cases have been largely settled by Min Yan and his
collaborators. The almost equilateral case (four edges of the same length and
the fifth different) is the most difficult one, and earlier techniques are insufficient.
We have introduced decision-making algorithms in wxMaxima and new geometric
constraints to handle this case. We have obtained full classification for almost
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equilateral pentagons with three distinct angles and partial results for those with
five distinct angles. We will discuss our findings which include Earth Map Tilings
and some special tilings not seen in the other pentagon cases.

A 3-edge-colouring algorithm

Robert Lukotka
(joint work with Jakub Tétek)

Let G be a subcubic graph and let D be a path decomposition of G. We
present an algorithm that decides whether G is 3-edge-colourable with running
time O(|V(GQ)]| - 3¥(P)), where w(D) denotes the width of D. Using the path-
width algorithm of Fomin and Hgie [1] we get an algorithm with running time
O(30/6+) V(G for an arbitrary € > 0, that is O(1.201V(I). This is a significant
improved over the until now asymptotically best algorithm by Kowalik [2], which
runs in O(1.344/V(@1). The algorithm is (with some slight modifications) easy
to implement and practical. The method can also be used to calculate several
related invariants for cubic graphs. We present modifications of the algorithm
that calculate resistance, weak oddness, and strong oddness.
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Between proper and strong edge-colorings
of subcubic graphs

Borut Luzar

(joint work with Herve Hocquard and Dimitri Lajou)

In the talk, we will discuss edge-colorings of (sub)cubic graphs. Namely, we will
consider edge-colorings in which we work with two types of colors: the proper and
the strong colors. The edges colored with the same proper color form a match-
ing (no two edges are incident), and the edges colored with the same strong color
form an induced matching (no two edges are incident to a common edge). Clearly,
when all the colors are proper, the edge-coloring of a graph is proper, and if all
the colors are required to be strong, we have a strong edge coloring. The tight
upper bounds for the chromatic indices of the above two extremal colorings are
long established, thus we will focus to edge-colorings with combinations of proper
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and strong colors. Such colorings have been investigated before, but only as a tool
to obtain results for other types of colorings. Systematically, they have been in-
troduced just recently by Gastineau and Togni as the edge coloring variation of
S-packing colorings [1]. We will present results on the topic and give a number
of open problems.
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Packing directed circuits quarter-integrally

Tomas Masarik
(joint work with Irene Muzi, Marcin Pilipczuk,
Pawel Rzazewski, and Manuel Sorge)

The celebrated Erdds-Pdsa theorem [1] states that every undirected graph that
does not admit a family of k£ vertex-disjoint cycles contains a feedback vertex
set (a set of vertices hitting all cycles in the graph) of size O(klogk). After
being known for long as Younger’s conjecture, a similar statement for directed
graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas [2].
However, in their proof, the dependency of the size of the feedback vertex set on
the size of vertex-disjoint cycle packing is not elementary.

We show that if we compare the size of a minimum feedback vertex set in a di-
rected graph with quarter-integral cycle packing number, we obtain a polynomial
bound. More precisely, we show that if in a directed graph G there is no family
of k cycles such that every vertex of (G is in at most four of the cycles, then
there exists a feedback vertex set in G of size O(k*). On the way there we prove
a more general result about quarter-integral packing of subgraphs of high directed
treewidth: for every pair of positive integers a and b, if a directed graph G has di-
rected treewidth Q(a®b®log?(ab)), then one can find in G a family of a subgraphs,
each of directed treewidth at least b, such that every vertex of GG is in at most
four subgraphs.
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On uniquely colourable graphs

Samuel Mohr

A uniquely k-colourable graph is a graph with exactly one partition of the vertex
set into k colour classes. Here, we investigate some constructions of uniquely k-
colourable graphs and give a construction of K-free uniquely k-colourable graphs
with equal colour class sizes.

Coloring triangulations, even triangulations
and quadrangulations on surfaces

Atsuhiro Nakamoto

Four Color Theorem is one of the most celebrated results on graph coloring, but
its proof is very complicated. On the other hand, we can easily verify that every
even triangulation on the plane (i.e., one with each vertex of even degree) is 3-
colorable, and that every quadrangulation (i.e., one with each face quadrilateral)
on the plane is 2-colorable.

If we focus on a locally planar graph on a non-spherical orientable surface (i.e.,
a graph on the surface with sufficiently large width), then the following are known:
(i) every triangulation is 5-colorable, (ii) every even triangulation is 4-colorable,
and (iii) every quadrangulation is 3-colorable, where those numbers are best pos-
sible. However, if we consider the same problems for nonorientable surfaces, then
the triple (5,4,3) of the upper bounds of chromatic numbers in (i), (ii), (iii)
changes into (5,5,4), and this strange fact can be explained by the existence of
“odd quadrangulations” on nonorientable surfaces.

In my talk, dealing with chromatic numbers of triangulations, even triangulations
and quadrangulations on surfaces, we report on the above results and related
topics. We also mention our recent progress on this area of researches.

Harnessing the power of atoms

Jana Novotna

(joint work with Konrad Dabrowski, Tomas Masarik,
Daniél Paulusma, and Pawel Rzazewski)

A graph is H-free if it does not contain the graph H as an induced subgraph.
Recently, a detailed study about clique-width of (Hy, Hy)-free graphs has been
published. There, the classes have been classified based on the boundedness of
clique-width and for only a few cases the bounds still remain unknown. It is
well known that for graphs of bounded clique-width exists an effective algorithm
for solving many graph problems. Some problems of combinatorial optimization
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can be solved effectively even on a larger class of graphs. Michaél Rao shows
an algorithm for graphs that are composed of atoms of small clique-width glued
together by clique cut sets, where atom is an induced subgraph that does not
contain a clique cut set. Using clique cut set the solution of some problems can
be inductively composed out of atoms, and therefore, we get an effective algorithm
for e.g., graph coloring or independent set.

If we look at graphs with only one forbidden induced subgraph, it is well known
that a transition to atoms does not help. Although, for two forbidden induced
subgraphs, Gaspers, Huang, and Paulusma showed the first positive result for
(Cy, Ps)-free graphs, i.e., those graphs have unbounded clique-width but bounded
clique-width of atoms. We extend the study of clique-width and for most of the
classes of graphs with two forbidden induced subgraphs and unbounded clique-
width, we determine whether the clique-width of their atoms is bounded or not.
For most classes, the transition to atoms does not help. We are able to mod-
ify existing constructions or derive new constrictions showing unboundedness of
clique-width even for atoms. On the other hand, we provide one another positive
evidence for (Triplet, 2P2)-free graphs, where Triplet is Cy with one additional
vertex that is adjacent to exactly three vertices of Cy.

Generalized coloring of permutations

Michal Opler
(joint work with Vit Jelinek and Pavel Valtr)

A permutation 7 is a merge of a permutation ¢ and a permutation 7, if we can
color the elements of 7 red and blue so that the red elements have the same
relative order as ¢ and the blue ones as 7. We consider, for fixed hereditary
permutation classes C and D, the complexity of determining whether a given
permutation 7 is a merge of an element of C with an element of D.

We develop general algorithmic approaches for identifying polynomially tractable
cases of merge recognition. Our tools include a version of nondeterministic
logspace streaming recognizability of permutations, which we introduce, and
a concept of bounded width decomposition, inspired by the work of Ahal and
Rabinovich [1].

As a consequence of the general results, we can provide nontrivial examples of
tractable permutation merges involving commonly studied permutation classes,
such as the class of layered permutations, the class of separable permutations, or
the class of permutations avoiding a decreasing sequence of a given length.
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The size-Ramsey number of tight 3-uniform paths

Olaf Parczyk
(joint work with Jie Han, Yoshiharu Kohayakawa, and Guilherme Oliveira Mota)

Given a hypergraph H, the size-Ramsey number 75(H) is the smallest integer m
such that there exists a hypergraph G with m edges with the property that in
any colouring of the edges of G with two colours there is a monochromatic copy
of H. We prove that the size-Ramsey number of the 3-uniform tight path on
n vertices P is linear in n, i.e., fz(P,gg)) = O(n). This answers a question by
Dudek, La Fleur, Mubayi, and Rddl for 3-uniform hypergraphs [1].
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x-boundedness
for limited induced odd-cycle packing

Jakub Pekarek
(joint work with Zdenek Dvordk)

The graph classes defined by variously forbidden cycles figure prominently in the
structural graph theory. In coloring problems such classes are motivated in par-
ticular by the Strong Perfect Graph Theorem and the concept of y-boundedness.
A class of graphs is x-bounded if the chromatic number of the graphs from the
class can be bounded by a function of the clique number.

Motivated by recent algorithmic results exploiting the property of not having two
disjoint odd cycles (satisfied by certain geometric graph classes) we study the
chromatic number of k-OC-free graphs, defined as graphs containing no induced
subgraph consisting of k£ pairwise vertex-disjoint odd cycles.

We show that if G is k-OC-free of girth g > 4, then x(G) < 5k — 2 and further-
more, if g > 7, then x(G) < k + 2. In general case, every k-OC-free graph G
has chromatic number at most f(k,w(G)) for some function f(k,w) = O(w?*=3).
On the other hand, a standard probabilistic construction shows that for every
integer w > 1, there exists a 2-OC-free graph G, with clique number at most w

s.t. x(G) > O(w?/log®w).
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Short rainbow cycles and cuts

Petra Pelikanova
(joint work with Aneta Stastna and Sophie Spirkl)

Rainbow cycle in edge-colored graph is a cycle with all edges of distinct colors.
Aharoni conjecture about short rainbow cycles in edge-colored graphs is general-
ization of Caccetta-Haggkvist conjecture [2].

Conjecture (Aharoni [1]). Let G be a simple n-vertex graph and ¢ be a coloring
of E(G) with n colors, where each color class has size at least k. Then G contains
a rainbow cycle of length at most {ﬂ :

The conjecture was proved for k& = 2 by DeVos et al [3]. This result guarantees
existence of rainbow cycle Cj of length at most ’—g-‘ for bigger k. The talk is
focused on structure of cuts between this rainbow cycle C) and the rest of the

graph. There will be introduced cuts which implies short rainbow cycles for k = 3.
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Asymmetric colourings of infinite graphs
Monika Pil$niak

A colouring of a graph G is called asymmetric if the identity is the only automor-
phism preserving the colouring. The distinguishing number D(G) of a graph is
the least number of colours in an asymmetric vertex colouring. It was introduced
by Albertson and Collins in [1]|, and was first considered for infinite graphs by
Imrich, Klavzar and Trofimov in [3]. An asymmetric edge colourings was first
investigated by Kalinowski and Pil$niak in [4] and for infinite graphs by Broere
and Pilsniak [2].

In the talk, we survey results on asymmetric vertex and edge colourings of in-
finite graphs. We give known general upper bounds in terms of the maximum
degree. We focus mainly on several classes of graphs which need only two or
three colours to break all nontrivial automorphisms. The most intriguing conjec-
ture in this area is an Infinite Motion Conjecture posed by Thomas Tucker that
every connected locally finite graph, such that every nontrivial automorphism
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moves infinitely many vertices, has the distinguishing number at most two. We
show very recent results obtained together with Lehner and Stawiski in this topic.
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Hamiltonian problems
in line graphs of 3-hypergraphs

Zdenék Ryjacek
(joint work with Binlong Li, Kenta Ozeki, and Petr Vrana)

Line graphs of 3-hypergraphs can be considered as a natural generalization of line
graphs of (multi-)graphs (note that a line graph of a 3-hypergraph is K 4-free but
can contain induced claws K;3). We extend some statements related to a 1986
conjecture by Thomassen (every 4-connected line graph is hamiltonian) to this
class, and we generalize them to Tutte cycles and paths (a cycle/path is Tutte if
any component of its complement has at most three vertices of attachment).

Among others, we formulate the following conjectures:

(1) every 2-connected line graph of a 3-hypergraph has a Tutte maximal cycle
containing any two prescribed vertices,
(71) every 3-connected line graph of a 3-hypergraph has a Tutte maximal cycle
containing any three prescribed vertices,
(7i1) every connected line graph of a 3-hypergraph has a Tutte maximal (a,b)-
path for any two vertices a, b,
(iv) every 4-connected line graph of a 3-hypergraph is Hamilton-connected,

and we show that all these (seemingly much stronger) statements are still equiv-
alent with Thomassen’s conjecture.
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Polynomial y-binding functions
for Ps-free graphs

Ingo Schiermeyer

(joint work Christoph Brause and Maximilian Geifler)

A graph G with clique number w(G) and chromatic number x(G) is perfect if
X(H) = w(H) for every induced subgraph H of G. A family G of graphs is called
x-bounded with binding function f if x(G") < f(w(G")) holds whenever G € G
and G’ is an induced subgraph of G.

In this talk we will present a survey on polynomial y-binding functions. Es-
pecially we will address perfect graphs, hereditary graphs satisfying the Vizing
bound (xy < w + 1), graphs having linear x-binding functions and graphs having
non-linear polynomial y-binding functions. Thereby we also survey polynomial
x-binding functions for several graph classes defined in terms of forbidden induced
subgraphs, among them 2K,-free graphs, Py-free graphs, claw-free graphs, and
diamond-free graphs. Our main focus will be on recent results for Ps-free graphs.
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On DP-coloring of digraphs

Thomas Schweser

(joint work with Jergen Bang-Jensen, Thomas Bellitto, and Michael Stiebitz)

DP-coloring is a relatively new coloring concept by Dvordk and Postle [1] and was
introduced as an extension of list-colorings of (undirected) graphs. It transforms
the problem of finding a list-coloring of a given graph GG with a list-assignment
L to finding an independent transversal in an auxiliary graph with vertex set
{(v,¢) | v € V(G),c € L(v)}. In this talk, we extend the definition of DP-
colorings to digraphs using the approach from Neumann-Lara where a coloring
of a digraph is a coloring of the vertices such that the digraph does not contain
any monochromatic directed cycle. Furthermore, we present a Brooks’ type the-
orem for the DP-chromatic number, which extends various results on the (list-)
chromatic number of digraphs.
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Minimum shortest path cover

Gabriel SemanisSin

(joint work with Iztok Peterin)

Let G be a graph and u,v be vertices of G. A shortest path path P between
vertices u and v is said to be extendible if there exist vertices x,y in G such that
{u,v} # {x,y} and P is a subpath of a shortest path between = and y.

Let P be the set of all shortest paths of a graph G that are not extendible.
A subset S C V(G) is called minimum shortest path cover of G if it has non-
empty intersection with all paths belonging to P. The cardinality of the smallest
minimum shortest path cover in a graph G is denoted £(G).

The new concept provides a generalisation of the minimum vertex cover and is
motivated by a study of structural properties of graphs.

We investigate elementary properties of the introduced invariant, provide some
lower and upper bounds and exact values for some classes of graphs.

Aharoni conjecture with more edges of each color

Aneta St’astna

(joint work with Petra Pelikanovd and Sophie Spirkl)

A directed graph is simple, if it does not contain any loops, parallel edges or
digons (directed cycles of length two). A cycle in edge-colored graph is rainbow
if all edges of the cycle have distinct colors.

Following conjecture by Caccetta and Haggkvist introduces a relation between
outdegree of each vertex and presence of a short directed cycle:

Conjecture ([2]). Every simple n-vertex directed graph with minimum out-
degree at least k has a directed cycle with length at most [ﬂ

This conjecture has been generalized by Aharoni for unoriented graphs and edge
coloring;:

Conjecture ([1]). Let G be a simple n-vertex graph and ¢ be a coloring of
E(G) with n colors, where each color class has size at least k. Then G contains
a rainbow cycle of length at most {%W :
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We have shown that there exists a rainbow cycle of length [7] if G contains
at least f(k) € O(k?) edges of each color, using some partial results for these
conjectures.
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Measures of edge-uncolorability of cubic graphs

Eckhard Steffen

There are many hard conjectures in graph theory, like Tutte’s 5-flow conjecture,
which would be true in general if they would be true for cubic graphs. Since most
of them are trivially true for 3-edge-colorable cubic graphs, cubic graphs which
are not 3-edge-colorable, often called snarks, play a key role in this context. In
the talk we survey parameters measuring how far apart a snark is from being
3-edge-colorable. Besides getting new insight into the structure of snarks, we
show that such measures are used to prove partial results with respect to some
conjectures. The talk is based on the collection of results on this topic given in [1].
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Even dicuts and cut minors

Raphael Steiner
(joint work with Karl Heuer and Sebastian Wiederrecht)

An important graph class are the Pfaffian graphs, which admit a Pfaffian ori-
entation [4]. The latter can be used to count the number of perfect matchings
in Pfaffian graphs efficiently. While in general, the complexity of the recogni-
tion problem is open, a polynomial-time algorithm exists for bipartite graphs
[2, 1]. The recognition of bipartite Pfaffian graphs is equivalent to the recogni-
tion of so-called non-even digraphs. These are the digraphs whose arcs can be
0, 1-weighted such that every directed cycle has odd weight. This talk deals with
a dual problem, namely, we consider odd dijoins in digraphs, which are arc sets
intersecting every minimal dicut in an odd number of elements. We give a precise
characterisation of digraphs admitting an odd dijoin in terms of certain forbidden
minors. This result is analogous to a corresponding result for non-even digraphs
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by Seymour and Thomassen [3]. We show that the problem of testing for and
finding an odd dijoin is polynomial-time equivalent to testing whether a given
digraph contains a minimal dicut of even size. We present polynomial algorithms
for special cases of the latter problem.
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Non-1-planarity
of lexicographic products of graphs

Yusuke Suzuki

(joint work with Naoki Matsumoto)

We show the non-1-planarity of the lexicographic product of a theta graph and
K;. This result completes the proof of the conjecture, posed in [1], which states
that a graph Go K5 is 1-planar if and only if G has no edge belonging to two cycles.

REFERENCES

[1] J. Bucko, J. Czap, 1-planar lexicographic products of graphs, Appl. Math.
Sci. 9 (2015), 5441-5449.

Hamiltonicity of lexicographic product

Jakub Teska
(joint work with Jan Ekstein)

The lexicographic product G[H| of two graphs G and H is obtained from G by
replacing each vertex with a copy of H and adding all edges between any pair of
copies corresponding to adjacent vertices of G. In [2] Teichert and in [1] Kriessell
found a sufficient conditions for Hamiltonicity of lexicographic product P[H] of
a path P and a graph H. We improved these these result by finding a full char-
acterization of hamiltonian and traceable graphs P[H| of lexicographic product
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of a path P and a graph H. Moreover, we proved even more general results. We
found the already mentioned characterizations of graph G[H;, Hs, ..., H,], which
can be viewed as a generalization of lexicographic product.

REFERENCES

[1] M. Kriesell, A note on Hamiltonian cycles in lexicographical products, J.
Autom. Lang. Comb. 2 (1997), 135-138.

[2] H.-M. Teichert, Hamiltonian properties of the lexicographic product of undi-
rected graphs, Elektron. Informationsverarbeitung Kybernetik 19 (1983), 67—
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Strong edge coloring of graph products

Zsolt Tuza

(joint work with Suresh Dara, Suchismita Mishra, and Narayanan Narayanan)

As introduced some years before the first C&C Workshop, the strong chromatic
index of a graph is the minimum number of colors in an edge coloring such that
each color class is an induced matching. We prove lower and upper bounds and
tight results for some product graphs. These include a subclass of Cayley graphs,
and Cartesian products of two graphs where one factor is a tree and the other
factor is a tree or a cycle.

Colouring non-even digraphs

Sebastian Wiederrecht
(joint work with Marcelo Garlet Millani and Raphael Steiner)

A colouring of a digraph as defined by Neumann-Lara in 1982 is a vertex-colouring
such that no monochromatic directed cycles exist. The minimal number of colours
required for such a colouring of a loopless digraph is defined to be its dichromatic
number. This quantity has been widely studied in the last decades and can be
considered as a natural directed analogue of the chromatic number of a graph.
A digraph D is called even if for every 0-1-weighting of the edges it contains
a directed cycle of even total weight. We show that every non-even digraph has
dichromatic number at most 2 and an optimal colouring can be found in poly-
nomial time. We strengthen a previously known NP-hardness result by showing
that deciding whether a directed graph is 2-colourable remains NP-hard even if
it contains a feedback vertex set of bounded size.
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On directed versions of the 1-2-3 conjecture
and the 1-2 conjecture

Mariusz Wozniak

Let G = (V, E) be a graph. Given an integer k, a k-coloring (labeling) of G is
a function f : £ — {1,2,...,k}. The coloring f can be represented by substi-
tuting each edge e of G by a multiedge with multiplicity f(e). The degree of  in
the respective multigraph equals the sum of labels around a vertex x. The 1-2-3
Conjecture says that for graphs without isolated edges there exists a 3-coloring
f such the the corresponding multigraph is locally irregular i.e. for each edge zy
of G we have o(z) # o(y) where o(x) = >, f(e). The 1-2 Conjecture refers to
the case when we also color the vertices.

During the talk we shall look at the directed versions of these problems. We will
discuss the results contained in the papers listed in the references below.
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ture, Discuss. Math. Graph Theory 35 (2015), 141-156.
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Components condition and factors in graphs
Qinglin Roger Yu

Tutte’s famous 1-factor theorem (1947) gave a characterization of perfect match-
ings in terms of odd components, namely, a graph G contains 1-factors if and
only if o(G — 5) < |S| for any subset S of V(G), where o(G — S) is the number
of odd components in G — S. A similar theorem using the number of isolated
vertices gave a characterization of fractional perfect matching. So the numbers of
odd components and isolated vertices can be good descriptions of specified span-
ning subgraphs. This observation inspires an interesting question: what kind
of spanning subgraphs can be characterized by the condition o(G — S) < «|S]
(or o(G — 8) < B]S|)? In this talk, we survey the recent developments in this
direction. The discussion on toughness as a type of component condition (i.e.,
w(G —S) <v]9]), in particular the results related to cycle and coloring, are also
included.
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